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Background: The integration of artificial intelligence (AI) into medicine is growing, with some experts 
predicting its standalone use soon. However, skepticism remains due to limited positive outcomes from 
independent validations. This research evaluates AI software’s effectiveness in analyzing chest X-rays (CXR) 
to identify lung nodules, a possible lung cancer indicator.
Methods: This retrospective study analyzed 7,670,212 record pairs from radiological exams conducted 
between 2020 and 2022 during the Moscow Computer Vision Experiment, focusing on CXR and computed 
tomography (CT) scans. All images were acquired during clinical routine. The final dataset comprised 100 
CXR images (50 with lung nodules, 50 without), selected consecutively and based on inclusion and exclusion 
criteria, to evaluate the performance of all five AI-based solutions, participating in the Moscow Computer 
Vision Experiment and analyzing CXR. The evaluation was performed in 3 stages. In the first stage, the 
probability of a nodule in the lung obtained from AI services was compared with the Ground Truth (1—
there is a nodule, 0—there is no nodule). In the second stage, 3 radiologists evaluated the segmentation of 
nodules performed by the AI services (1—nodule correctly segmented, 0—nodule incorrectly segmented or 
not segmented at all). In the third stage, the same radiologists additionally evaluated the classification of the 
nodules (1—nodule correctly segmented and classified, 0—all other cases). The results obtained in stages 2 
and 3 were compared with Ground Truth, which was common to all three stages. For each stage, diagnostic 
accuracy metrics were calculated for each AI service.
Results: Three software solutions (Celsus, Lunit INSIGHT CXR, and qXR) demonstrated diagnostic 
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Introduction

Machine learning (ML), artificial neural networks (ANNs), 
and deep learning (DL) are all components of artificial 
intelligence (AI) that have seen a surge in interest and 
application in recent times. ML is the process of using 
algorithms to automate decision-making by employing 
models that are not manually coded but are instead trained 
on datasets. ANNs, a subset of ML, are designed to mimic 
the brain’s structure and functionality. DL, meanwhile, 
utilizes a network of interconnected neurons across multiple 
layers, facilitating the analysis and processing of extensive 
and intricate data. In the medical field, these technologies 
are being integrated to enhance the speed and effectiveness 
of disease diagnosis and treatment (1).

Recently, radiologists have investigated how to use AI 
in medical imaging (2-6). AI-based analysis of chest X-rays 
(CXR) has the potential to assist in the diagnosis and triage 
of patients with lung cancer, tuberculosis, pneumonia, 
and other diseases. Although various researchers develop 
solutions that may be introduced to clinical settings, several 
companies have already made their software available to 
end users. These companies often claim that their software 
has high diagnostic accuracy metrics, but in most cases, 
independent evaluations either do not occur or do not 
validate the companies’ claimed metrics. 

For example, in a study by van Leeuwen KG et al., it 
was shown that for 64 out of 100 studied CE-labelled AI 
products, there was insufficient peer-reviewed evidence on 
their efficacy. Only 18/100 AI products have demonstrated 
potential clinical impact (7).

In a systematic review conducted by Kelly et al. 
showed that in 77 studies for which external validation 
was performed and direct comparison was possible, AI-
based software performance decreased on average by 6% 
when externally validated (range of increase from 4% to a 
decrease of 44%) (8).

Approaches such as the evaluation commercial AI 
solutions in radiology (the ECLAIR guidelines) have been 
proposed to critically evaluate AI-based solutions before 
purchase. In particular, they suggest paying attention to 
issues related to performance and validation of AI-based 
software (9).

Therefore, we decided to make a small contribution to 
independent evaluations of commercial AI software.

The aim of our work was to provide an independent 
evaluation of five commercially available AI-based solutions 
for chest radiography and to assess their applicability for 
the diagnosis of lung nodules. We present this article in 
accordance with the STARD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-24-160/rc).

Methods

The computer vision experiment and choice of software

In 2019 the Moscow government began Moscow Computer 
Vision Experiment which aims to investigate if AI solutions 
can be introduced into routine clinical practice (10). The 
ongoing experiment (2023) aims to support radiologists’ 
decision-making. During the Experiment, different vendors 

metrics that matched or surpassed the vendor specifications, and achieved the highest area under the receiver 
operating characteristic curve (AUC) of 0.956 [95% confidence interval (CI): 0.918 to 0.994]. However, 
when evaluated by three radiologists for accurate nodule segmentation and classification, all solutions 
performed below the vendor-declared metrics, with the highest AUC reaching 0.812 (95% CI: 0.744 to 
0.879). Meanwhile, all AI services demonstrated 100% specificity at stages 2 and 3 of the study.
Conclusions: To ensure the reliability and applicability of AI-based software, it is crucial to validate 
performance metrics using high-quality datasets and engage radiologists in the evaluation process. 
Developers are recommended to improve the accuracy of the underlying models before allowing the 
standalone use of the software for lung nodule detection. The dataset created during the study may be 
accessed at https://mosmed.ai/datasets/mosmeddatargogksnalichiemiotsutstviemlegochnihuzlovtipvii/.
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of AI-based software presented their solutions to the Center 
for Diagnostics and Telemedicine, which approved the 
inclusion of the best-performing solutions in the Unified 
Radiological Information Service (URIS). For this study, 
we chose the software from the participants of Moscow 
Computer Vision Experiment. We realise that there are now 
many other AI services, including non-commercial ones 
with open access. However, our choice was driven primarily 
by the need for healthcare system in the safe delivery of 
medical care. In the Moscow Experiment, AI services are 
used by radiologists to make decisions, so the omission of 
pathology by AI services is highly undesirable. Identifying 
nodules in the lungs is a demanding task, and their omission 
by AI services undermines confidence in new technologies 
for both doctors and patients. That is why we have chosen 
only those AI services that are available to our radiologists.

Seven solutions proved capable of analyzing CXR data, 
but two of the vendors declined public publication of their 
results. Therefore, five AI-based solutions were included 

in the further analysis. Many software contributing to the 
Experiment is not typically mentioned in the AI-based 
solution reviews. Thus, a current study might update 
the readers on some novel AI-based software and its 
performance. The details on AI-based software regulations 
in Russia can be found elsewhere (11). 

AI-based software solutions 

The following five solutions were chosen for the present 
study: qXR, Celsus, Program for automated analysis of 
digital fluorograms, Care Mentor AI, and Lunit INSIGHT 
CXR. The software was accepted to participate in the 
Moscow Experiment if they claimed the area under the 
receiver operating characteristic curve (AUC) greater than 
0.810. A detailed description of the solutions and their 
diagnostic metrics (presented by the vendors) is shown in 
Tables 1-3. 

All 5 AI services work in medical organizations and are 

Table 1 A detailed description of the metrics presented by the developers of the studied software (declared within the Moscow Computer Vision 
Experiment) 

Software name (vendor name if different) 
Diagnostic accuracy metrics

AUC Sensitivity Specificity Accuracy

qXR (Qure.ai, represented in Russia by LLC “Chestnaya meditsina”) 0.920 0.900 0.820 0.850

Celsus (LLC “Medical Screening Systems”) 0.920 0.900 0.860 0.860

Program for automated analysis of digital fluorograms (LLC “FtizisBioMed”) 0.950 0.900 0.980 0.940

Care Mentor AI 0.930 0.860 0.920 0.910

Lunit INSIGHT CXR (Lunit, represented in Russia by R-Pharm) 0.920 0.790 0.950 N/A

AUC, area under the receiver operating characteristic curve; AI, artificial intelligence; CXR, chest X-ray; N/A, not available.

Table 2 Details of the AI-based software 

AI-based software Architectures Dataset Source

qXR CNN Training: 3.5 million CXR images. Testing: 213,459 X-rays 
randomly selected from a set of 3.5 million X-rays used. 
Validation: 13,426 independent images

(12)

Celsus Mask-RCNN, DenseNet-121 and 
some other models

Training: 29 thousand CXR images. Testing: 4 thousand 
CXR images

N/A

Program for automated analysis 
of digital fluorograms

N/A N/A N/A

Care Mentor AI Inception-V3 and ResNet-50 276,840 frontal X-ray lung images (13)

Lunit INSIGHT CXR N/A 54,221 normal chest radiographs and 35,613 chest 
radiographs from patients with major thoracic diseases

(14)

AI, artificial intelligence; CXR, chest X-ray; N/A, not available.
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therefore registered in Russia as medical devices (National 
Registration by Roszdravnadzor). Without a registration 
certificate, a medical device cannot be sold, used or 
imported. In general, National Medical Registration by 
Roszdravnadzor is an analogue of CE-mark and FDA 
certification. Among the 5 services we evaluated, Lunit 
INSIGHT CXR and qXR have CE and FDA approval, 
Celsus has CE approval.

All AI services processed each image for less than 1 
minute, including the time of study transfer, processing, 
and response. There were no statistical differences in image 
processing time between the AI services.

The dataset

This is a retrospective study. To assess the diagnostic 
metrics of the software, we prospectively created a 
dataset of CXR images. The images were chosen from all 
radiological examinations acquired within the Moscow 
Computer Vision Experiment from 2020 to 2022. The 
final dataset consisted of 100 diagnostic images of CXR, 50 
of which were with the signs of lung cancer and other 50 
were with no specific features found (30). To select images 
with pathological findings, we analyzed 7,670,212 pairs 

of records that included both CXR and chest computed 
tomography (CT) scans. Images (both CXR and chest CT 
scans) were acquired during clinical routine. It is to note 
that 100 images represented a target dataset size, since the 
number of images that can be analyzed within the rational 
time frames is limited. The rationale of the sample size may 
be found in our previous work (31). 

The selection of studies was carried out consecutively. 
We started with selecting the records where CXR was 
done within 14 days prior to CT (92,436 pairs of images). 
Subsequently, using keywords indicating the presence of 
lung lesions and negative keywords, we obtained 8,503 
pairs of images. The keywords (in Russian) represented 
correct and incorrect spellings of the following words: 
“lesion”, “focus” (for CXR records) and “lump”, “tumor”, 
“neoplasia”, “mass” (for CT records). Negative keywords 
consisted of a long list of organs and pathologies not related 
to any lung pathology. The next step involved a thorough 
review of the textual reports attached to the records. The 
descriptions were processed if they contained the following 
words: “oncology, consultation, CT, peripheral lesion, focal 
changes, signs of single foci, multiple foci, solid nodules, 
neoplasms” and otherwise excluded if they contained “lung 
resection, tuberculoma, pleural effusion, pneumonia, cyst, 

Table 3 Five AI-based solutions chosen for evaluation and comparison 

Name Link Description
References (including 

usage examples)

qXR https://app.qure.ai/landing-page The software helps detecting findings across lungs, pleura, 
mediastinum, bones, diaphragm, and heart on chest X-ray 
in <1 min. It is able to differentiate normal X-ray studies and 
flag radiological signs of such conditions as TB, lung cancer 
and heart failure

(15-17)

Celsus https://lk.celsus.ai/demo?lang=eng The solution reduces the analysis time and improves the 
interpretation accuracy for fluorography and radiography 
images

(18)

Program for 
automated 
analysis of digital 
fluorograms

http://www.ftizisbiomed.ru/ Analyzes digital fluorographic images and identifies 
pathological foci

(19)

Care Mentor AI http://carementor.ru/ Interprets the results of radiological examinations (X-ray, CT, 
MRI, and mammography) in order to optimize the detection 
of various pathological conditions at an early stage

(13,20-26)

Lunit INSIGHT 
CXR

https://insight.lunit.io/cxr/login Computer-Assisted Detection Software that serves as 
a concurrent/second reading aid for the physicians. Its 
capabilities include detection, localization, identification, and 
reporting of suspicious abnormal radiologic findings

(27-29)

AI, artificial intelligence; TB, tuberculosis; CT, computed tomography; MRI, magnetic resonance imaging; CXR, chest X-ray.
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fibrosis, post-tuberculous changes, pleuritis, not detected, 
normal, central lesion of the lung”. The resulting pairs 
of CXR and CT files consisted of 103 pairs of images. 
Afterward, the images were reviewed by an expert 
radiologist and selected if a solid nodule was observed on 
CXR, and excluded if an opacity of less than 6 mm and 
greater than 30 mm was present. During the final stage, the 
records with technical issues were excluded from the study, 
so the final dataset consisted of 50 CXR images with lung 
nodules. Next, 50 images without pathological changes were 
selected from the CXR records. The selection consisted of 
two steps: first, 25 images with no pathological changes in 
both CXR and a corresponding CT were selected. Then, we 
picked 25 images where CXR showed pathological changes 
with no CT confirmation. The resulting dataset consisted of 
100 carefully processed CXR images [for the details on the 
sample sufficiency, see (31,32)], where 50 images highlighted 
lung nodules and the other 50 images had no findings. Due 
to technical reasons, some of the 5 solutions failed to process 
all 100 images. Therefore, the image processing results 
(Appendix 1) contain 95 analyzed images. The dataset may be 
accessed at https://mosmed.ai/datasets/mosmeddatargogksna
lichiemiotsutstviemlegochnihuzlovtipvii/.

Study demographics was as follows: 51 females, 47 males, 
and 2 cases with missing gender data. The median age was 
58 years (minimum: 18 years, maximum: 87 years). All CXR 
and CT included in the study were performed in Moscow 
between November 16, 2017, and April 6, 2022. The 
detailed process of image selection is described in Materials 
and Methods. We selected the records where CXR was 
done within 14 days prior to CT. The participant flow is 
presented in Figure 1.

There were no adverse events associated with the 
performance of the index test or reference standard.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013), and was 
approved by the Independent Ethics Committee of 
the Moscow Regional Office of the Russian Society of 
Radiologists and Radiographists (approval number 2, 
protocol code 2/2020 and date of approval 20.02.2020). The 
clinical trial number is NCT04489992. Informed consent 
form was signed during the clinical routine.

Interpretation and statistical analysis

The scores for the AI-based software were calculated as 

Pairs of records that included 
both CXR and chest CT scans

(n=7,670,212)

Pairs of records, where CXR 
preceding CT no longer than 

14 days
(n=92,436)

Pairs of records with lung 
formations
(n=8,503)

Pairs of records with words 
in description indicating lung 

formations
(n=103)

Pairs of records with solid 
nodules on CXR with diameter 

6–30 mm
(n=50)

Pairs of records excluded due to 
excluding words in description

(n=8,400)

Pairs of records excluded due to 
the absence of solid nodules on 

CXR, solid nodules diameter <6 or 
>30 mm, technical complications

(n=53)

Pairs of records without 
pathological changes 

at both CXR and a 
corresponding CT

(n=25)

Pairs of records with 
pathology-like changes 
at CXR, which were not 

confirmed on CT 
(n=25)

Pairs of records 
without pathological 

changes on CXR
(n=50)

Figure 1 Systematic selection of images with and without lung nodules. CXR, chest X-ray; CT, computed tomography.

https://cdn.amegroups.cn/static/public/QIMS-24-160-Supplementary.pdf
https://mosmed.ai/datasets/mosmeddatargogksnalichiemiotsutstviemlegochnihuzlovtipvii/
https://mosmed.ai/datasets/mosmeddatargogksnalichiemiotsutstviemlegochnihuzlovtipvii/
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follows (Table 4).
(I)	 Stage 1. AI-based software had access only to 

medical images. The scores of the AI-based 
solutions were calculated as follows. Once the 
images had been processed, the software returned 
the probability of pathology (a score from 0 to 100) 
in a Kafka message and on images containing the 
corresponding markups [in a Digital Imaging and 
Communications in Medicine (DICOM) format]. 
Kafka message is a text message in JavaScript 
Object Notation (JSON) format containing study 
processing details. Kafka messages are used to 
facilitate the interaction between AI-based software 
and the radiological information system. The 
probability of pathology in a study is an indicator 
important for triaging studies in the radiologist’s 
worklist. In this case, the response threshold can be 
redefined depending on the clinical task. For each 
AI-based solution, using the probability estimates 
from AI, we calculated the AUC and determined 
the point that corresponds to the maximum value 
of the Youden index. Next, the point was set as 
a cutoff value for each model. Using these cut-
off values, the image scores were tagged as “No 
finding” when the initial score was below the cut-
off value; the “Pathological changes” tag was set 
when the initial score was above the cut-off value.

(II)	 Stage 2. The radiologists accessed the marked-

up images (Figure 2) along with the findings and 
impressions from DICOM structured report (SR) 
(Figure 3). Every expert independently evaluated 
the DICOM images that the AI-based software 
returned with the marked pathological loci. At 
this stage, the experts reviewed the markup (if the 
nodule was exactly where the software placed the 
markup). If the opinions of at least 2 out of three 
experts matched, the corresponding answer [true 
positive (TP), true negative (TN), false positive 
(FP), and false negative (FN)] was put in the final 
evaluation table.

(III)	 Stage 3. At this stage, the experts evaluated 
whether the software recognized the marked-up 
lesion as a lung nodule. If the opinions of at least 
2 out of three experts matched, the corresponding 
answer (TP, TN, FP, and FN) was put in the final 
evaluation table.

A schematic illustration of the three stages of our study is 
presented in Figure S1.

Diagnostic metrics (AUC, specificity, sensitivity, 
accuracy) were calculated using a Web tool for receiver 
operating characteristic analysis (https://roc-analysis.
mosmed.ai/, accessed on the 1st of June, 2023) (33). 
McNemar’s test was used for paired comparisons of the 
sensitivity and specificity of the software. Three radiologists 
manually studied the images that contained the annotation 
provided by the AI-based solutions to ensure they included 
correct lung nodule markup and labels. 

The experts 

The experts were represented by three radiology 
specialists with working experience of greater than  
5 years and sub-specialization in CXR. All doctors received 
the corresponding medical diplomas from the medical 
universities with residency in radiology. The experts had 
access to AI-processed CXRs as well as CT and clinical 
information. At stages 2 and 3 of the present study, every 
expert independently evaluated the DICOM images that the 
AI-based software returned with the marked pathological 
loci. Then, the independent assessments were collected and 
in case at least two radiologists presented the same estimate, 
were set as final estimates.

Results

The results of the study are presented in Table 5.

Figure 2 An image with the markup made by one of the AI-based 
solutions. R, right side; L, left side; LIN, linear opacification; 
NDL, nodular opacification; DIAPHM, diaphragm disorder; AI, 
artificial intelligence.

LINLIN

DIAPHMDIAPHM

NDLNDL

NDLNDL

https://cdn.amegroups.cn/static/public/QIMS-24-160-Supplementary.pdf
https://roc-analysis.mosmed.ai/
https://roc-analysis.mosmed.ai/
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Stage 1: detection of pathologies overall 

As shown in Table 5, the AUC values obtained at the first 
stage of our study were consistent with the developer’s 
claims for three AI-based software: qXR, Celsus, and 
Lunit INSIGHT CXR. The remaining two software 
(Programme for automated analysis of digital fluorograms 
and Care Mentor AI) showed AUCs that were statistically 
significantly lower than those stated by the developers.

The sensitivity indicators showed a similar pattern. 
The only exception was Lunit INSIGHT CXR, which 
demonstrated a statistically significantly higher sensitivity 
than was declared by the developers. On the contrary, the 
specificity of this AI-software turned out to be significantly 
lower than the declared one.

It is also interesting that the specificity of Celsus, which 
demonstrated sensitivity not inferior to that declared by the 
developer, was higher than declared.

The data were further used to calculate the number of 
TP, TN, FP and FN interpretations (Table S1).

Stage 2: lung nodules segmentation

In the second stage of the study, we analyzed the abilities 
of 5 software solutions to segment nodules on chest 
radiographs. Three radiologists reviewed all the processed 
images to see if the AI correctly segmented the nodules. 
The segmentation was considered correct if the model 
segmented the nodule or the region where it was located. 
Segmenting more than 1/3 of the lung area was considered 
an incorrect segmentation.

At the second stage of our study, we found that the 

AUC of 4 out of 5 services was significantly lower than the 
developers’ claims. Only Celsus demonstrated the AUC 
corresponding to the one declared by the developer (Table 5).

The sensitivity of all AI-based software was significantly 
lower than that stated by the developers. In practice, this 
manifested itself in the fact that the software either did not 
segment lung nodules at all (Figure 4) or segmented more 
than 1/3 of the lung field in which the nodule was located 
(Figure 5).

In contrast to sensitivity, the specificity of all 5 AI 
services at the second stage of the study was significantly 
higher than that stated by the developers. In fact, this meant 
that none of the AI services segmented non-existent nodules 
on all 50 CXRs without lung nodules.

The data were further used to calculate the number of 
TP, TN, FP and FN interpretations (Table S2).

Stage 3: lung nodules segmentation and classification

In the third stage of the study, we analysed the ability of 
AI services to correctly segment and classify lung nodules. 
In other words, to correctly solve the task that radiologists 
perform in their routine clinical practice.

Evaluations of the software’s ability to segment nodules 
were obtained in the second stage of the study. In the 
third stage, three radiologists further reviewed all images 
for correct classification performed by the AI models. 
The classification was considered correct if the model 
identified the detected nodule as a nodule (1—“Correct 
Classification”) and incorrect if the model misclassified 
the detected nodule as another pathology (0—“Incorrect 
Classification”). The data were further used to calculate the 

>>>Code meaning Finding

>>Text value

Lungs: Linear opacification detected with a probability of 0.62, nodular opacification detected with a probability of 0.66 
Pathology of the pleura and diaphragm: Pathology of the diaphragm was detected with a probability of 0.62  
Cardiac changes: No cardiac changes  
Other changes: No other changes found  
Final probability of pathology: 0.66

>>Relationship type CONTAINS

>>Value type TEXT

>>Concept name code sequence [This is a sequence]

>>>Code value 209001

>>>Coding scheme designator 99PMP

>>>Code meaning Impression

>>Text value Probability of pathology: 0.66

Figure 3 Example of a DICOM SR containing findings and impressions with the probability of pathology scores provided by one of the AI-
based software. DICOM, Digital Imaging and Communications in Medicine; SR, structured report; AI, artificial intelligence.

https://cdn.amegroups.cn/static/public/QIMS-24-160-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-160-Supplementary.pdf
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Table 5 Comparison of AUC, sensitivity, specificity, and accuracy declared by the developers of AI-based software and obtained during the three 
stages of the experiment for the five models 

Diagnostic 
accuracy 
metrics

AI-based software Declared

Obtained

Stage 1 (detection of 
pathologies overall)

Stage 2 (lung nodules 
segmentation)

Stage 3 (lung nodules 
segmentation and classification)

AUC  
(95% CI)

qXR 0.920 0.921 (0.862 to 0.980) 0.823* (0.754 to 0.889) 0.792* (0.721 to 0.860)

Celsus 0.920 0.956 (0.918 to 0.994) 0.885 (0.824 to 0.945) 0.812* (0.744 to 0.879)

Program for automated 
analysis of digital fluorograms

0.950 0.858* (0.790 to 0.925) 0.844* (0.775 to 0.910) 0.688* (0.619 to 0.753)

Care Mentor AI 0.930 0.810* (0.723 to 0.897) 0.708* (0.640 to 0.773) 0.667* (0.599 to 0.734)

Lunit INSIGHT CXR 0.920 0.932 (0.887 to 0.977) 0.787* (0.720 to 0.854) 0.787* (0.720 to 0.854)

Sensitivity 
(95% CI)

qXR 0.900 0.854 (0.750 to 0.954) 0.646* (0.510 to 0.781) 0.583* (0.444 to 0.723)

Celsus 0.900 0.875 (0.781 to 0.970) 0.770* (0.652 to 0.890) 0.625* (0.488 to 0.762)

Program for automated 
analysis of digital fluorograms

0.900 0.750* (0.630 to 0.872) 0.690* (0.556 to 0.819) 0.375* (0.238 to 0.512)

Care Mentor AI 0.860 0.604* (0.466 to 0.740) 0.417* (0.277 to 0.556) 0.333* (0.200 to 0.467)

Lunit INSIGHT CXR 0.790 0.920** (0.840 to 0.990) 0.574* (0.433 to 0.716) 0.574* (0.433 to 0.716)

Specificity 
(95% CI)

qXR 0.820 0.830 (0.722 to 0.937) 1.0** (1.0 to 1.0) 1.0** (1.0 to 1.0)

Celsus 0.860 0.960** (0.900 to 1.0) 1.0** (1.0 to 1.0) 1.0** (1.0 to 1.0)

Program for automated 
analysis of digital fluorograms

0.980 0.960 (0.900 to 1.0) 1.0** (1.0 to 1.0) 1.0** (1.0 to 1.0)

Care Mentor AI 0.920 0.910 (0.835 to 0.990) 1.0** (1.0 to 1.0) 1.0** (1.0 to 1.0)

Lunit INSIGHT CXR 0.950 0.810* (0.700 to 0.920) 1.0** (1.0 to 1.0) 1.0** (1.0 to 1.0)

Accuracy 
(95% CI)

qXR 0.850 0.880 (0.820 to 0.950) 0.820 (0.744 to 0.898) 0.789 (0.707 to 0.871)

Celsus 0.860 0.916 (0.860 to 0.972) 0.884 (0.820 to 0.950) 0.810 (0.732 to 0.889)

Program for automated 
analysis of digital fluorograms

0.940 0.850* (0.781 to 0.930) 0.842* (0.769 to 0.915) 0.684* (0.590 to 0.778)

Care Mentor AI 0.910 0.760* (0.672 to 0.844) 0.705* (0.610 to 0.797) 0.663* (0.568 to 0.758)

Lunit INSIGHT CXR N/A 0.860 (0.790 to 0.930) 0.787 (0.707 to 0.868) 0.787 (0.704 to 0.870)

The comparison relies on the ground truth markup. The values of the obtained metrics, taking into account 95% CI, which were less than 
those stated by the developer are marked with “*”, and those which were more than those stated by the developer are marked with “**”. 
The metrics named by the vendors are shown for detection of pathologies overall. AUC, area under the receiver operating characteristic 
curve; AI, artificial intelligence; CXR, chest X-ray; CI, confidence interval. 

number of TP, TN, FP and FN interpretations (Table S3).
We found that at this stage the AUC and sensitivity of 

all 5 AI services were lower than the values declared by the 
developers. Also, the values of these parameters at stage 
3 of the study were lower than at stage 2 for most of the 
AI services. This was due to the fact that some of the lung 
nodules found at the second stage were misclassified at the 
third stage (Figure 6).

Specificity at stage 3 remained 1.0 for all AI services, as 
none of the AI services detected non-existent lung nodules 
on 50 CXR without lung nodules.

Analyzing FP and FN responses of AI services

Further, it was observed that the AI-based software yielded 
FP and FN results for some images more often than for the 

https://cdn.amegroups.cn/static/public/QIMS-24-160-Supplementary.pdf
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others. In the end, at least 4 out of 5 models misinterpreted 
17 images from the dataset: 12 radiography studies were 
assigned a FN status and five images were labeled as FP. To 
identify possible causes of the errors, we submitted original 
radiography studies and those processed by the models 
to three radiologists for review. They concluded that the 
models failed to detect the lung nodules (i.e., produced FN 
conclusions) for the following reasons:

(I)	 The shadow of the nodule was overlapped by the 
shadow either of the hilum, the rib, or both at the 
same time (11 out of 12 FN studies),

(II)	 The diameter, density, and location of the nodule 
shadow resembled the cross-section of an artery (1 
of 12 FN studies).

The main reason for the FP results among the 5 images 
was the detection of non-target pathology, most often 
cardiomegaly (4 cases). We must point out that in each of 
these situations, the findings ‘observed’ by AI were not actually 
present in the images. When analyzing the total number of the 
estimates, 46 results were FNs and 23 were FPs.

Paired comparisons of the diagnostic metrics obtained 
during the previous stages

At all stages of the study, no statistically significant 
differences were observed between the sensitivity values of 
the three models that demonstrated the highest values of 
this parameter (Figure S2). At the second and third stages, 
the specificity of all models reached the maximum possible 
value.

Discussion

Comparison of diagnostic accuracy metrics of AI services 
obtained in our and other studies

When analyzing the 5 AI services operating within the 
Moscow Experiment, we obtained AUC values from 0.810 

Figure 4 An example of a clearly visible to the human eye nodule 
in the lung (indicated by the red arrow) that was not segmented by 
3 out of 5 AI-based software. AI, artificial intelligence.

Figure 5 An example of excessive segmentation of a lung nodule 
by one of the AI based software. In such cases, the nodule was 
considered to be incorrectly segmented. AI, artificial intelligence.

Figure 6 Example of correct segmentation but misclassification 
(nodule defined as infiltration/consolidation) made by one of the 
AI services. AI, artificial intelligence.

Lung nodule

https://cdn.amegroups.cn/static/public/QIMS-24-160-Supplementary.pdf
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to 0.956 in the first stage of our study and from 0.667 to 
0.812 in the third stage of our study.

It is interesting to compare the results with those of other 
authors. A study by Kufel et al. reported reported that their 
AI model achieved an AUC of 0.771 for lung nodules. Also 
according to the comparative analysis done by the authors, 
the AUC in other studies ranged from 0.669 to 0.811 (34). 
In a systematic review and meta-analysis by Aggarwal et al., 
the AUC when lung nodules are detected on CXR is 0.884 
[95% confidence interval (CI): 0.842 to 0.925] (32). In a 
recent study by van Leeuwen et al. evaluating the ability of 
four commercial AI services to detect pulmonary nodules, 
the AUC was in the range of 0.86 to 0.93 (35). We can 
see that the AUC obtained in other studies varies widely. 
Nevertheless, we can say that the AUC obtained for 5 AI 
services at stage 1, 2 and, most importantly, 3 of our study 
is generally comparable to the AUC of other AI software in 
studies by other authors.

However, we still believe that it is not entirely appropriate 
to compare the AUC that was obtained in different studies 
on different datasets. For a more objective comparison of 
AI services it is necessary to evaluate their performance on 
the same dataset. This is a logical continuation of our work, 
which we plan to carry out in the future.

Comparison of AI service diagnostic accuracy metrics 
obtained in our study and radiologists’ diagnostic accuracy 
metrics obtained in other studies

Another issue worth discussing is the comparison of 
diagnostic accuracy metrics between radiologists and AI 
services. According to a number of authors, the AUC 
of radiologists in the lung nodule detection task ranges 
from 0.810 to 0.839 (35-37). Compared to this range 
of values, the AUC values we obtained in stage 1 of the 
study were higher in 4 of the 5 AI services. Only one of 
the 5 AI services showed an AUC value comparable to the 
radiologists’ AUC values reported in the literature in the 
third stage of the study.

In the future, we plan to evaluate the performance of 
radiologists on the dataset we used to compare it with the 
performance of the 5 AI services presented in this paper.

Discussion of the causes of FNs

When analyzing images that confused most solutions, 
we highlighted the most common reasons for image 

misattribution. The obtained data are consistent with the 
conclusions of several other authors, who believe the most 
common cause of FN results was the shadow of the lung 
nodule overlapping with that of the ribs and clavicles (38,39). 
This reason can be considered one of the most significant 
since the suppression of the rib and collarbone shadows on 
CXR with a neural network can boost the sensitivity of AI-
based models from 79.8% to 91.5% (P<0.001) (40). The 
prevalence of FN results is consistent with the generally 
accepted view that the identification of lung nodules is 
one of the most challenging tasks in automated medical 
image analysis (41). The detection of complex (i.e., hard 
to differentiate) nodules in the lungs is difficult to both 
radiologists and AI (42). 

On the one hand, AI-based software errors can help 
attract the specialist’s attention to an image, and despite 
the mislabeling, once received by a radiologist, the image 
will be thoroughly analyzed. On the other hand, errors can 
undermine trust which means the radiologists would less 
likely seek help from AI. 

Relationship between the provenance of AI service training 
datasets and the resulting diagnostic accuracy metrics

It is also worth paying attention to the relationship 
between the data sets used to train the AI services under 
consideration and the diagnostic accuracy metrics obtained. 
It is known that unbalanced training data sets by race and 
ethnicity can lead to biases in the further operation of AI 
services in the practical healthcare of a particular country 
(43,44). In our study, we did not find a clear impact of 
datasets on the performance of AI services. For example, 
CareMentor AI, which demonstrated the lowest AUC 
among 5 AI services, was trained on datasets collected in the 
USA and Russia. On the contrary, Celsus, also trained on 
data from the USA, Russia and several other countries (UK, 
Vietnam, Belarus), showed the highest AUC among the 5 
AI services. Two foreign AI services for Russia: qXR (trained 
on X-rays collected in 45 centers worldwide) and Lunit 
INSIGHT CXR (trained on X-rays collected in Korea) had 
AUC values close to Celsus.

Scenarios for fine-tuning AI services to address specific 
clinical challenges

As mentioned above, the cut-off value was adjusted 
according to the maximum value of the Youden index only 
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at the first stage of the research. At the second and third 
stages, we had to use only cut-off values that corresponded 
to the internal settings of the AI-based software.

We assume that, unlike the 1st stage, the lower 
sensitivity and higher specificity at the 2nd and 3rd stages 
may partly be due to the choice of the cut-off values at 
each of the stages. This paves the way for fine-tuning AI-
based software for clinical practice, depending on the task 
at hand. The first scenario suggests using AI as the only 
reader. In this case, the balance between sensitivity and 
specificity corresponding to the maximum value of the 
Youden index will be relevant. Another approach is using 
AI to assign patients with suspected pathology in CXR 
into a risk group, followed by an in-depth examination or 
dynamic observation. In this case, the settings that secure 
the highest sensitivity to make sure the AI would not miss 
a pathology will be preferred. Thirdly, the opposite task 
may be considered—ruling out patients with normal CXR 
to reduce the burden on radiologists. To achieve this, the 
optimal settings must provide maximum specificity to 
correctly determine the patients with normal CXR with 
little to no error.

Therefore, from a clinical standpoint, when it comes to 
nearly ideal specificity, FNs are the most unforgiving of 
errors, because late detection of lung nodules significantly 
increases the risk of adverse outcomes. It may also be 
assumed that the main focus of AI use in modern practice 
may change from detecting a pathology to triage.

Speaking of detecting target pathologies, none of the AI-
based solutions lived up to their product claims. Therefore, 
in this study, none of the software was capable to secure 
100% sensitivity, although all of them are certified as 
medical devices. According to the reviewed literature, such 
deviations are likely to be caused by either overfitting due 
to small and/or unbalanced training datasets, underfitting 
due to excessive regularization that reduces flexibility, or 
the number of features in the model is too small (45). To 
truly demonstrate the generalizability of AI models it is 
essential to use external validation with target populations 
not involved in training. Many publicly available datasets 
are heavily used in AI model training and are therefore 
unsuitable for independent external validation. Ideally, 
the performance of the AI models should be externally 
validated using real-world screening data to demonstrate 
generalizability and provide a rationale for clinical adoption 
(46,47). AI models, just like any diagnostic tool, must be 
evaluated using the objective assessment standards typical to 

clinical setting. In our opinion, there are several solutions to 
these issues:

(I)	 Additional training and testing of commercially 
available AI-based software using real-time data 
before introduction to routine clinical practice;

(II)	 Training on larger and more diverse datasets that 
include difficult-to-define lung nodules;

(III)	 Providing enough features during training and 
using enough regularization to prevent both 
overfitting and underfitting.

Although AI services have not yet reached 100% 
sensitivity, we are seeing significant improvements in 
the performance of AI services in a variety of clinical 
applications. Much of this was fuelled by the COVID-19 
pandemic, when it was proven in the most challenging 
environment for healthcare systems around the world 
that AI services can improve the diagnostic quality of 
radiological examinations (48,49).

Method limitations

The results were obtained in early 2023 using the software 
versions available at the moment. Updates to the versions 
may lead to changes in the diagnostic metrics. Here, we 
did not aim to compare the technical specifications of 
the software, therefore a thorough analysis of the model 
architectures was not performed. 

Conclusions

The present study assesses the effectiveness of AI-based 
software in CXR analysis and its suitability for detecting 
lung nodules. The AI solutions showed high AUC (up to 
0.956) in distinguishing between normal and pathological 
cases. However, radiologists found that the AI’s correct 
interpretation of CXRs with lung nodules, based on 
probability and a cut-off value, didn’t always mean the AI 
segmented and classified the nodules accurately. The highest 
AUC among the 5 algorithms decreased to 0.885 when the 
segmentation correctness was examined. Moreover, when 
evaluating both the segmentation and classification of the 
lung nodules, the highest AUC dropped even further to 0.812.

Hence, for a comprehensive assessment of AI-based 
software’s ability to detect lung nodules, a binary evaluation 
alone is not enough. Expert validation is required to 
determine whether the AI is correctly segmenting and 
classifying lung nodules.
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Supplementary

Appendix 1

study_id GT Celsus Lunit INSIGHT CXR qXR
Program for automated analysis of 

digital fluorograms
Care Mentor AI

1 0 45 0.18 11 0 34

2 0 1 0.01 5 0 28

3 1 77 0.96 52 99 28

4 0 40 0.01 6 0 28

5 0 4 0.01 1 0 30

6 1 94 0.95 84 99 68

7 0 61 0.04 12 0 27

8 0 56 0.06 9 0 28

9 1 54 0.03 15 0 28

10 0 5 0.01 15 0 25

11 0 7 0.16 6 0 54

12 0 52 0.02 5 0 89

13 0 6 0.01 3 0 13

14 0 4 0.01 7 0 31

15 0 29 0.25 5 0 7

16 1 77 0.43 19 0 42

17 0 0 0.01 7 0 28

18 0 0 0.02 4 0 14

19 0 0 0.01 8 0 28

20 0 0 0.01 2 0 28

21 1 76 0.96 84 84 91

22 0 3 0.01 2 0 8

23 0 30 0.16 91 0 98

24 0 0 0 1 0 7

25 0 1 0.01 2 0 6

26 1 65 0.77 83 99 28

27 0 57 0.1 83 87 34

28 0 21 0.05 6 0 28

29 0 11 0.16 4 0 33

30 0 24 0.01 56 0 21

31 0 6 0.07 3 0 33

32 0 9 0.01 5 0 33

33 0 17 0.01 5 0 28

34 0 70 0.05 12 99 28

35 1 88 0.85 93 99 80

36 0 0 0.01 6 0 13

37 1 92 0.94 64 92 21

38 0 3 0.01 3 0 28

39 0 6 0.04 9 0 28

40 0 1 0.01 8 0 28

41 0 5 0.01 3 0 14

42 0 1 0.02 2 0 28

43 0 8 0.01 3 0 28

44 1 11 0.04 12 0 28

45 0 38 0.2 9 0 31

46 0 6 0 17 0 32

47 0 4 0 7 0 10

48 0 8 0.07 3 0 5

49 0 1 0 6 0 25

50 0 59 0.02 5 0 25

51 0 55 0.1 11 0 13

Appendix 1 (continued)
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Appendix 1 (continued)

study_id GT Celsus Lunit INSIGHT CXR qXR
Program for automated analysis of 

digital fluorograms
Care Mentor AI

52 1 97 0.99 98 99 93

53 1 97 0.82 84 99 92

54 0 3 0.01 6 0 9

55 1 93 0.92 81 99 99

56 0 75 0.12 12 0 69

57 0 53 0.01 17 0 8

58 0 4 0.04 6 0 32

59 1 79 0.77 7 0 28

60 0 4 0.01 4 0 14

61 1 90 0.77 84 99 24

62 1 79 0.93 81 98 82

63 1 88 0.59 62 99 68

64 1 79 0.82 8 77 45

65 1 96 0.94 92 99 73

66 1 80 0.96 90 49 33

67 1 94 0.86 86 99 88

68 1 48 0.72 59 0 33

69 1 63 0.58 78 99 6

70 1 91 0.96 83 99 75

71 1 78 0.84 60 0 28

72 1 4 0.05 5 0 28

73 1 83 0.09 90 0 97

74 1 93 0.65 87 61 41

75 1 90 0.83 73 99 70

76 1 91 0.88 93 99 93

77 1 95 0.85 73 99 91

78 1 66 0.14 66 99 30

79 1 55 0.37 14 0 30

80 1 66 0.13 16 0 33

81 1 87 0.83 83 99 72

82 1 67 0.35 59 0 21

83 1 83 0.66 82 99 28

84 1 82 0.08 13 98 33

85 1 83 0.09 92 99 56

86 1 91 0.68 72 73 56

87 1 99 0.09 96 99 91

88 1 94 0.08 90 99 97

89 1 88 0.08 85 99 79

90 1 10 0.08 4 0 33

91 1 95 0.15 86 99 97

92 1 77 0.05 72 99 90

93 1 96 0.24 85 99 86

94 1 87 0.13 88 99 92

95 1 91 0.11 81 99 97
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Figure S1 Schematic illustration of the three stages of our study. The red figure schematically indicates a lung nodule that actually exists on 
CXR. White outline schematically indicates segmentation performed by the AI, white text indicates classification performed by the AI. TP, 
true positive; FN, false negative; FP, false positive; TN, true negative; CXR, chest X-ray; AI, artificial intelligence.

Table S1 The results of the dataset analysis by the AI-based software solutions (translated into binary scale and compared to GT)

Results Celsus Lunit INSIGHT CXR qXR
Program for automated analysis 

of digital fluorograms
Care Mentor AI

True positive 42 44 43 36 29

False negative 6 4 5 12 19

True negative 45 38 41 45 43

False positive 2 9 6 2 4

GT, ground truth; AI, artificial intelligence; CXR, chest X-ray.

Table S2 The results of the dataset analysis the AI-based software solutions, manually inspected by three radiologists for establishing the true/
false segmentation of the nodule by the software

Results Celsus Lunit INSIGHT CXR qXR
Program for automated analysis 

of digital fluorograms
Care Mentor AI

True positive 37 27 31 33 20

False negative 11 20 17 15 28

True negative 47 47 47 47 47

False positive 0 0 0 0 0

AI, artificial intelligence; CXR, chest X-ray.

Table S3 The results of the dataset analysis the AI-based software solutions, manually inspected by three radiologists for establishing the true/
false segmentation and classification of the nodule by the software

Results Celsus Lunit INSIGHT CXR qXR
Program for automated analysis 

of digital fluorograms
Care Mentor AI

True positive 30 27 28 18 16

False negative 18 20 20 30 32

True negative 47 47 47 47 47

False positive 0 0 0 0 0

AI, artificial intelligence; CXR, chest X-ray.
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Figure S2 Paired comparison of five models in terms of sensitivity, specificity, and accuracy (using McNemar’s test). Statistically significant 
results are colored green. The numbers colored in peach represent the values obtained at a certain stage of the experiment. AI, artificial 
intelligence; CXR, chest X-ray.


