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A B S T R A C T   

Purpose: replicability and generalizability of medical AI are the recognized challenges that hinder a broad AI 
deployment in clinical practice. Pulmonary nodes detection and characterization based on chest CT images is one 
of the demanded use cases for automatization by means of AI, and multiple AI solutions addressing this task are 
becoming available. Here, we evaluated and compared the performance of several commercially available 
radiological AI with the same clinical task on the same external datasets acquired before and during the 
pandemic of COVID-19. 
Approach: 5 commercially available AI models for pulmonary nodule detection were tested on two external 
datasets labelled by experts according to the intended clinical task. Dataset1 was acquired before the pandemic 
and did not contain radiological signs of COVID-19; dataset2 was collected during the pandemic and did contain 
radiological signs of COVID-19. ROC-analysis was applied separately for the dataset1 and dataset2 to select 
probability thresholds for each dataset separately. AUROC, sensitivity and specificity metrics were used to assess 
and compare the results of AI performance. 
Results: Statistically significant differences in AUROC values were observed between the AI models for the 
dataset1. Whereas for the dataset2 the differences of AUROC values became statistically insignificant. Sensitivity 
and specificity differed statistically significantly between the AI models for the dataset1. This difference was 
insignificant for the dataset2 when we applied the probability threshold initially selected for the dataset1. An 
update of the probability threshold based on the dataset2 created statistically significant differences of sensitivity 
and specificity between AI models for the dataset2. For 3 out of 5 AI models, the update of the probability 
threshold was valuable to compensate for the degradation of AI model performances with the population shift 
caused by the pandemic. 
Conclusions: Population shift in the data is able to deteriorate differences of AI models performance. Update of the 
probability threshold together with the population shift seems to be valuable to preserve AI models performance 
without retraining them.   

1. Introduction 

The appearance of open-access labeled datasets of medical imaging 
has led to a rapid increase in the number of AI models in medical di
agnostics, in particular in radiology[1]. One of the parameters that 
characterize the practical applicability and value of AI models is the 

ability to independently classify and generalize the data received[2]. 
The generalizability of AI models is an important feature that ensures 
the trained models to be applied effectively to new data and under new 
conditions[3–6]. It is known that AI models show the best diagnostic 
accuracy metrics for the similar patient group and pathological char
acteristics that were present in the training dataset. However, even 
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training the AI model on a dataset based on studies of the target patient 
population may not be sufficient for the acceptable performance of the 
AI model during deployment, e.g., [7–9]in the event of the appearance 
of the previously unaccounted highly prevalent comorbidities. For 
example, detection of the pulmonary nodules in the presence of the 
COVID-19 related radiological signs on chest CTs[10]. Particular diffi
culties can occur for the diagnosis of an early-stage lung cancer that has 
subsolid/ground glass nodule[11,12]. The latter appear on CT scans 
very similar to small areas of ground glass opacities that are associated 
with a mild lung parenchyma involvement of the COVID-19 infection 
[13]. Thus, it could distort a timely diagnosis of the lung cancer and 
selection of the proper treatment pathways in the lung cancer care[14]. 
Thus, lung pulmonary nodule detection task in the presence of the 
COVID-19 is an obvious population shift for the AI models which impact 
on the AI performance has to be investigated. Moreover, since in order to 
assess the severity of lung damage and the subsequent choice of treat
ment tactics for the COVID-19 patient, chest CTs were widely performed 
during the pandemic[15], it represents a pivotal opportunity to screen 
chest CT studies for the lung cancer radiological signs, using the AI 
models. However, the stability and replicability of diagnostic perfor
mance of the existing AI models for lung nodule detection should be first 
studied and compared for the target population before and during the 
COVID-19 pandemic. In this study, we compared on the same external 
data the performances of AI models for lung nodule detection before and 
during the COVID-19 pandemic. 

2. Methods 

This retrospective study was designed according to Standards for 
Reporting Diagnostic accuracy studies (STARD) 2015 guidelines. 
Approval was obtained from the local ethics committee. Separate 
informed consent was not required for this retrospective study. An 
overall study design is shown in Figure S1. 

2.1. AI models and datasets 

The study included six AI-based commercial models that participated 
in the research registered in ClinicalTrials (NCT04489992): AI-1 [16], 
AI-2 [17], AI-3 [18], AI-4 [19], AI-5 [20], AI-6 [21]. The developers 
announced that all diagnostic metrics (i.e., sensitivity, specificity and 
AUROC) for a target pathology were greater than 0.81. The target pa
thology was solid/subsolid nodules with only a solid component is 
measured larger than 6 mm (greater than100 mm3) [22]. The criterion 
for the inclusion of these models was full compliance with the use cases, 
that is, each declared the possibility of determining the pulmonary 
nodules larger than 6 mm. The exclusion criterion was in compliance 
with the analysis of the more than 10% of cases in each dataset. 

The details on AI models’ development that were provided by the 
developers are the following:  

• AI-1 model was based on U-net and ResNet-50 networks. It was 
developed analogously to [23]. The datasets used for training and 
internal validation were LIDC-IDRI[24], NSCLC-Radiomics[25] and 
a private dataset consisting of 1775 chest CT scans (912 scans con
tained suspicious lung nodules confirmed by two thoracic radiolo
gists (greater than5 years of experience).  

• AI-2 model was based on Faster-RCNN and LSTM networks. During 
the training, radam optimizer[26] and focal loss[27] were applied. 
Only a private dataset was used that comprised 1231 chest CT scans 
(775 with suspicious lung nodules).  

• AI-3 model architecture was based on an ensemble of U-net, Dense- 
net and ResNet networks. Luna[28], LNDb[29], NSCLC-Radiomics 
[25], CTLungCa-500[30] and a private dataset of 3918 chest CT 
scans were used for training and internal validations.  

• AI-4 model was based on Faster-RCNN 3d network. Only a private 
dataset was used that consisted of 3500 chest CT scans with 5123 
suspicious lung nodules confirmed by two experienced radiologists. 

• AI-5 model[20] consisted of a combination of U-nets for lung seg
mentation and lung nodules detection and characterization, focal 
loss[27] and log loss functions were used during training. For in
ternal validation, a private dataset of 250 chest CT scans (100 with 
the target pathology) was used. The presence of the suspicious 
nodules was determined based on a consensus of the experienced 
thoracic radiologists (greater than10 years of experience).  

• AI-6 model: the developer refused to provide information. 

Two datasets were used for evaluation of the AI models: Dataset1 
(before the COVID-19 pandemic) and Dataset2 (during the COVID-19 
pandemic[31]). Both datasets included anonymized unenhanced chest 
CT studies acquired at the multiple outpatient radiology departments 
[32] using Toshiba Aquilion 64 CT scanners. Similar scanning and 
reconstruction parameters were used for each of the different scanners: 
120 kVp tube-voltage, 80–500 mAs tube-current (automatically 
adjusted to achieve noise level of 10 HU for 5.0 mm thick slices), cau
docranial direction, pitch of 1.5, slice thickness of 1 mm, FC07 recon
struction kernel, 512 × 512 reconstruction matrix, an average of 
300–400 images (slices) per study. 

Inclusion criteria of CT studies for both datasets were the following: 
fully covered lungs, at least 10 mm distance from the lungs to the border 
of the field of view. 

Specific inclusion criteria for Dataset2 was the positive PCR test of a 
patient with the COVID-19 lung involvement revealed on the CT scans. If 
a CT scan revealed surgical interventions, patient-related artifacts (hand 
overlay over chest, body orientation, coughing, movements) or poor- 
quality scanning (planning, technical defects) this scan was not 
included in the datasets. 

Each CT study in both datasets was marked as “with the target pa
thology” if it had at least one pulmonary nodule larger than 6 mm, 
independently confirmed by two experienced radiologists (5 years of 
experience in thoracic radiology). When neither of two radiologists 
detected pulmonary nodules greater than 6 mm, the study was marked 
as “without the target pathology”. The studies that did not fulfill one of 
these two conditions were not included in the datasets. 

Dataset1 contained 100 chest CT scans (38 with the target pathology 
and 62 without the target pathology) acquired before the pandemic of 
COVID-19 (i.e., before December 2019). Patients characteristics of the 
dataset1 were the following: median age (IQR) – 61 (52–68), 55 female/ 
36 male. After inclusion of the studies that were processed successfully 
by all AI models, 91 chest CT scans remained in the dataset1. 

Dataset2 contained 100 chest CT scans (50 with the target pathology 
and 50 without the target pathology), acquired during the COVID-19 
pandemic. 32 out of 50 studies with the target pathology had up to 
50% lung parenchyma involvement due to the COVID-19, 23 out of 50 
studies without the target pathology had up to 50% lung parenchyma 
involvement due to the COVID-19 (Figure S1). Patients characteristics of 
the dataset2 were the following: median age (IQR) – 59 (42–72), 47 
female/38 male. After inclusion of the studies that were processed 
successfully by all AI models, 85 chest CT scans remained in the 
dataset2. 

In light of the above, dataset1 and dataset2 are comparable in terms 
of gender and age composition, but in dataset1 the class balance is 
slightly biased towards the normal studies (38:53 vs. 40:45). At the same 
time, dataset2 contains studies with signs of COVID-19-associated 
pneumonia both in the subgroup with target pathology (28:40) and 
without target pathology (21:45). Both datasets were collected from 32 
outpatient medical facilities equipped with a single model of CT scanner. 
Thus, we can speak of a fairly homogeneous data composition. 

The anonymized studies of both datasets were sent sequentially from 
PACS to the AI models that were located on external cloud servers. AI 
models responses were received back in the form of an abnormality 
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score and DICOM files in case the study was analyzed correctly, or an 
error message if the study could not be analyzed by AI. When at least one 
of the AI models processed a study unsuccessfully, the study was 
excluded from the further analysis. 

The AI models returned the abnormality score for the whole study. 
Area under the receiver operating characteristic curve (AUROC), 
sensitivity, specificity, net benefit [33] and threshold values were used 
to evaluated and compare performances of the AI models[34]. Since the 
datasets were relatively balanced for two classes, ROC analysis was used 
to select an optimal operating point. The operating point is applied to 
convert the continuous abnormality score of the AI model to a dichot
omous decision: studies with scores equal or above the operating point 
are interpreted as “with the target pathology” according to the AI model, 
studies with scores below the operating point are labelled as “without 
the target pathology”. Then a confusion matrix is constructed is order to 
calculate diagnostic metrics. Sensitivity and specificity were calculated 
at the operating point of the maximum Youden index[35,36]. The 
threshold (operating point) values for each AI model were obtained 
separately for the dataset1 and the dataset2. 

The first part of the study aimed to explore whether there were 
significant differences in the AI models performances on the same 
datasets (before and during the COVID-19 pandemic). For this purpose, 
diagnostic accuracy metrics (ROC AUC, sensitivity, specificity, net 
benefit) of each AI model were compared with each other on dataset1 
and dataset2 (Figure S1). 

The second part investigated whether the operating point adjustment 
during the COVID-19 pandemic had a significant impact on the AI 
models’ performance. For this, diagnostic accuracy metrics (sensitivity, 
specificity, net benefit) were compared on dataset 2 with and without 
threshold adjustment. 

We also analyzed the data obtained using logistic regression to 
calculate the positive class thresholds [37]. 

2.2. Statistical analysis 

The area under the ROC curve (AUROC) is reported with 95% con
fidence intervals (CIs 95%). The DeLong method was used to calculate 
the confidence interval for AUROC[38]. 

The 95% confidence intervals for the sensitivity and specificity were 
determined by means of a binominal proportion [39]. 

ROC AUC were compared using roc.test method = DeLong from R 
language, with correction for multiple FDR. The McNemar with Yates 
Correction and False discovery rate (FDR) multiple comparison test was 
used to compare sensitivity and specificity. The null hypothesis (H₀) of 
no statistically significant differences in diagnostic accuracy was tested. 
A p-value less than 0.05 was considered an indicator of the significant 
difference. 

For calculations, we used the web tool for the comprehensive ROC 
analysis: https://roc-analysis.mosmed.ai. 

A complete study design is shown in Figure S1. AI-6 was not included 
in the final analysis because it did not process studies from the dataset2. 

3. Results 

Diagnostic accuracy metrics per AI model obtained for two datasets 
before (dataset1) and during the coronavirus pandemic (dataset2) are 
shown in Table1. A detailed comparative analysis of the diagnostic ac
curacy metrics and threshold values is presented below. 

3.1. Auroc 

On the data acquired before the pandemic (dataset1) a maximal 
AUROC of 0.97 (95%CI: 0.94–1.0) among all AI models was shown by 
the AI-1 model (Fig. 1, left column). AUROC of five AI models varied 
between 0.97 and 0.72 (Table 1). A statistically significant difference (p 
less than 0.05) between AUROC values occurred between AI-1 vs. AI-2, Ta
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Fig. 1. ROC curves of AI models obtained on the two datasets.  
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AI-1 vs. AI-5, AI-2 vs. AI-3, AI-2 vs. AI-4, AI-3 vs. AI-5, AI-4 vs. AI-5 pairs 
(Table 2). On the data acquired during the pandemic (dataset2) a 
maximal AUROC of 0.89 (95%CI: 0.81–0.96) among all AI models was 
shown by the AI-2 model (Fig. 1, right column). AUROC of five AI 
models varied between 0.89 and 0.75 (Table 1). No statistically signif
icant difference between AUROC occurred between five AI-models 
(Table 3). 

Four out of five AI models had lower AUROC values for the dataset1 
than for the dataset2, and only AI-2 had a higher AUROC value for the 
dataset 2 than for the dataset2. However, these difference were not 
statistically significant (p greater than 0.05). 

3.2. Sensitivity and specificity 

Sensitivity values ranged among the AI-models between 0.97 and 
0.71 for the dataset1, 1.00–0.70 for the dataset2 without the threshold 
update and 1.00–0.73 for the dataset2 with the threshold update 
(Table 1). Pairwise statistically significant differences between AI 
models were observed for each of the three settings (Table 4). However, 
no pair of AI models remained statistically significant different for all the 
three settings simultaneously. 

Specificity values ranged among the AI-models between 0.98 and 
0.79 for the dataset1, 0.89–0.49 for the dataset2 without the threshold 
update and 0.78–0.60 for the dataset2 with the threshold update 
(Table1). Pairwise statistically significant differences between AI 
models were observed for two of the three settings, namely dataset1 and 
dataset2 with the threshold update (Table 4). One pair of AI models (AI- 
1 vs. AI-5) remained statistically significant different for these two set
tings simultaneously. 

An example of a study with the target pathology from the dataset2 is 
shown in Fig. 2. Four out of five AI models detected the lung nodule 
correctly; however, two of them had additional false positive findings in 
the same study related to the COVID-19 lung parenchyma changes. 

Fig. 3 shows the study without the target pathology from the data
set2, for which all five AI models identified the COVID-19 lesions as a 
lung nodule. Figs. 4 and 5 show the studies without the target pathology 
from the dataset1, which majority of the AI models indicated as suspi
cious (i.e., false positive findings). 

3.3. Threshold update 

When determining the optimal threshold (operating point) for each 
AI model, different values were obtained for the dataset1 and the 
dataset2. The difference in relation to the threshold value obtained on 
the dataset1 ranged from − 12 to + 58 while the threshold may have 
values in the range from 0 to 100. An impact of the threshold update of 
the AI models based on the dataset2 in comparison with the setting when 
the threshold would be determined on the dataset1 only was studied for 
the sensitivity and specificity values of AI models for the dataset2. 
Table 5 demonstrates that the threshold update had (1) stabilized 
specificity values of three AI models between dataset1 and dataset2 (AI- 
2, AI-4 and AI-5); (2) had no impact for one AI model (AI-3); (3) had 

stabilized sensitivity values of one AI model (AI-1) between dataset1 and 
dataset2. 

The results of using logistic regression to calculate the positive class 
thresholds are presented in Supplement (Table S1). They suggest that 
regression-based thresholds are suboptimal for lung nodule detection in 
the clinical setting. Therefore, in the future, we will analyze the results 
obtained by the method of the maximum Youden index. 

3.4. Net benefit 

Each model’s net benefit was calculated for dataset1, dataset 2, and 
dataset 2 after threshold adjustment (Table 1). For models 4 and 5, the 
benefit decreased significantly in dataset 2, but returned to the previous 
values after threshold adjustment. For model 3, the net benefit 
decreased on dataset2, and threshold adjustment did not increase the 
benefit. For model 2, the net benefit did not change. For model 1, it 
decreased, and adjusting the threshold could not affect the benefit. 

4. Discussion 

Here, we validated externally and compared five radiological AI 
models. The validation and comparison were performed on the same 
data and for two settings: before and during the COVID-19 pandemic. A 
population shift caused by the pandemic resulted in an overall statisti
cally significant degradation of inter- and intra-performances of the 
majority of included AI models. The significance of the degradation 
could be decreased though for most of the AI models studied in this work 
by the prediction threshold update. 

The diagnosis of pulmonary nodules within the superimposed 
COVID-19 related radiological signs is a challenging task even for ra
diologists due to a number of factors. For example, the concentration of 
radiologist’s attention on the underlying pathology, radiological 
changes make it difficult to assess comprehensively the lung paren
chyma. Therefore, it is valuable to use the AI in conditions of the 
pandemic and the adaptation of AI systems to the presence of comor
bidities[40]. Due to the similarity of the radiological pattern of COVID- 
19 and early lung cancer[13], AI models often showed false positives in 
the dataset2 when ground glass was erroneously assessed by the AI 
model as a suspicion of the pulmonary nodule. A multiclassification 
deep learning model for diagnosing COVID-19, pneumonia, and other 
chest diseases could differentiate between lung cancer and COVID-19. 
Deep learning can possibly differentiate individual types of pathology 
(multiclass classification) with a high degree of certainty. But can one 
type of pathology be so well differentiated by AI against the background 
of another (multilabel classification)? Our recent study showed an 
acceptable level of diagnostic precision in 3 of 5 studied AI models that 
had an AUC greater than 0.81[41]. Previous study have already 
demonstrated the varying effectiveness of AI models in detecting pul
monary nodules in the context of COVID-19[42]. Of the great practical 
importance is the composition of the datasets on which the AI model was 
trained. Most studies have been retrospective, using historic data to train 
models; the true utility comes to the fore in the real-world setting, which 

Table 2 
Pairwise AUROC values comparison of AI models for the dataset1. Bold font 
indicates statistically significant difference. Regular font shows statistically 
insignificant difference. ROC AUC values are present on the main diagonal  

i 
j 

AI-1 AI-4 AI-3 AI-5 AI-2 

AI-1 0,97 0,03* 0,05 0,19 0,25 
AI-4 − 0,03** 0,94 0,02 0,16 0,22 
AI-3 − 0,05 − 0,02 0,92 0,14 0,20 
AI-5 ¡0,19 ¡0,16 ¡0,14 0,78 0,06 
AI-2 ¡0,25 ¡0,22 ¡0,20 − 0,06 0,72 

*AI-j > AI-i – positive value. 
**AI-j < AI-i – negative value. 

Table 3 
Pairwise AUROC values comparison of AI models for the dataset2 (with updated 
threshold). Bold font indicates statistically significant difference. Regular font 
shows statistically insignificant difference. ROC AUC values are present on the 
main diagonal.  

i 
j 

AI-2 AI-1 AI-4 AI-3 AI-5 

AI-2 0,89 0,01 0,07 0,09 0,14 
AI-1 − 0,01 0,88 0,06 0,08 0,13 
AI-4 − 0,07 − 0,06 0,82 0,02 0,07 
AI-3 − 0,09 − 0,08 − 0,02 0,8 0,05 
AI-5 − 0,14 − 0,13 − 0,07 − 0,05 0,75    
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may vastly differ from that experienced in the model training[43]. In our 
study, unfortunately, we do not reliably know the characteristics of the 
datasets on which the AI models were trained as we assessed them as the 
ready-to-use solutions. However, our study led to an important 

conclusion about the need to fine-tune the AI model to work effectively 
under the new conditions (COVID-19). According to Susana Goncalves 
et al., [10] the lack of real-world validation is rapidly being addressed 
with many studies (ongoing/completed) integrating an external AI 

Table 4 
Pairwise comparison of sensitivity and specificity values of AI models for the dataset1, dataset2 (without the threshold update) and dataset2 (with the threshold 
update). Bold font indicates statistically significant difference. Regular font shows statistically insignificant difference.  

X vs Y AI-1 vs AI-2 AI-1 vs AI-3 AI-1 vs AI-4 AI-1 vs AI-5 AI-2 vs 
AI-3 

AI-2 vs AI-4 AI-2 vs AI-5 AI-3 vs AI-4 AI-3 vs AI-5 AI-4 vs AI-5 

Dataset1       
Sensitivity 0,34* 0,02 0,02 0,26 ¡0,32 ** ¡0,32 − 0,08 0*** 0,24 0,24 
Specificity 0,13 0,11 0,19 0,19 − 0,02 0,06 0,06 0,08 0,08 0 
Dataset2 (with the threshold update)       
Sensitivity − 0,02 − 0,10 0,05 0,17 − 0,08 0,07 0,19 0,15 0,27 0,12 
Specificity 0,05 0,18 0,02 0,05 0,13 − 0,03 0 − 0,16 − 0,13 0,03 
Dataset2 (without the threshold update)       
Sensitivity − 0,02 ¡0,3 ¡0,25 ¡0,22 ¡0,28 ¡0,23 ¡0,2 0,05 0,08 0,03 
Specificity − 0,05 0,31 0,31 0,35 0,36 0,36 0,4 0 0,04 0,04 

*X > Y – positive value. 
**X < Y – negative value. 
***no difference. 

Fig. 2. Case #1 from Dataset2. Case with target pathology – solid lung nodule greater than 6 mm. AI-1 missed a solid nodule of 11 mm. AI-2, AI-5 detected the solid 
nodule correctly. AI-3, AI-4 – detected the solid nodule correctly, but also there were additional false positive findings associated with Covid-19. 
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validation in their study design. Without an additional fine-tuning (i.e., 
the threshold update) of the AI model to the epidemiological situation, 
we risk deploying AI models which will not have practical value due to 
the high false positive rate. Our data also showed an increase in net 
benefit when AI models were fine-tuned, indicating that the model has 
clinical utility, as the benefits outweigh the harms. This criterion can be 
used to assess the value of fine-tuning. 

In our study, we did not reveal replicability of machine learning for 
detection of lung nodules in the presence of the population shift due to 
COVID-19, since AI models showed different trends of changes of their 
accuracy metrics. 

This study has limitations. First, we did not access the influence of 
increasing the dataset shift on the prediction accuracy of the datasets. 

However, despite using only two dataset shift points, we have observed 
the change of performance of the majority of included AI models. Sec
ond, the two datasets had slightly different size and balance in terms of 
norm/pathology cases, female/male proportion, and age distribution. 
The difference could introduce some unaccounted confounding vari
ables when comparing the AI performance between dataset 1 and 2. 
Nevertheless, the difference between the datasets is irrelevant when 
comparing the AI diagnostic accuracy before and after threshold update 
on the same dataset. 

The implications for practice derived from our study reside in the 
necessity of target pathology datasets update mirroring the change of 
epidemiological situation. It is especially important when the alternative 
condition has overlapping radiology features with the target disease. 

Fig. 3. Case #2 from Dataset2. Case without the target pathology. All AI models identified the changes in the lung due to the COVID-19 as a suspicious lung nodule.  
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Such a strategy makes it possible to decrease a possible number of false- 
positive findings, thereby reducing the burden on the healthcare system 
caused by unnecessary additional testing of patients with suspected 
abnormalities. 

5. Conclusions 

AI models for the diagnosis of pulmonary nodules showed compa
rable levels of AUROC when analyzing studies acquired during the 
Covid-19 pandemic compared to the dataset that did not contain Covid- 

Fig. 4. Case #3 from Dataset1. Case without the target pathology. AI-2: Vessels are marked as the target pathology. AI-4: A false-positive finding of an area of 
stranded fibrosis. AI-1,3,5 correctly rated the study as “no target pathology”. 

Fig. 5. Case #4 from Dataset1. Case without the target pathology. AI-1: A false positive finding (4 mm nodule). AI-2: A false positive finding (subclavian artery). AI- 
3: A false positive finding (adhesion). AI-4: A false positive findings (fibrosis, bones, artery fragment). 
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19 related signs. However, the specificity of AI models decreased due to 
a large number of false positives amid patients with the lung paren
chyma changes due to the coronavirus infection if the threshold was not 
updated during the pandemic. To ensure the optimal diagnostic accu
racy metrics during deployment of AI, it is necessary to fine-tune the 
threshold of the AI models depending on the epidemiological situation 
and patient population characteristics. 
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