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Abstract. Vertebral body compression fractures are reliable early signs
of osteoporosis. Though these fractures are visible on Computed Tomog-
raphy (CT) images, they are frequently missed by radiologists in clini-
cal settings. Prior research on automatic methods of vertebral fracture
classification proves its reliable quality; however, existing methods pro-
vide hard-to-interpret outputs and sometimes fail to process cases with
severe abnormalities such as highly pathological vertebrae or scoliosis.
We propose a new two-step algorithm to localize the vertebral column
in 3D CT images and then to simultaneously detect individual vertebrae
and quantify fractures in 2D. We train neural networks for both steps
using a simple 6-keypoints based annotation scheme, which corresponds
precisely to current medical recommendations. Our algorithm has no
exclusion criteria, processes 3D CT in 2 s on a single GPU and provides
an intuitive and verifiable output. The method approaches expert-level
performance and demonstrates state-of-the-art results in vertebrae 3D
localization (the average error is 1mm), vertebrae 2D detection (preci-
sion is 0.99, recall is 1), and fracture identification (ROC AUC at the
patient level is 0.93).

Keywords: Vertebral fractures · Object detection · Keypoints
localization

1 Introduction

Osteoporotic fractures are common in older adults and resulted in more than two
million Disability Adjusted Life Years in Europe [10]. The presence of vertebrae

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-59725-2 70) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
A. L. Martel et al. (Eds.): MICCAI 2020, LNCS 12266, pp. 723–732, 2020.
https://doi.org/10.1007/978-3-030-59725-2_70

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59725-2_70&domain=pdf
https://doi.org/10.1007/978-3-030-59725-2_70
https://doi.org/10.1007/978-3-030-59725-2_70
https://doi.org/10.1007/978-3-030-59725-2_70


724 M. Pisov et al.

fractures dramatically increases the probability of subsequent fractures [13]; thus
can be used as an early marker of osteoporosis. Medical imaging, such as Com-
puted Tomography (CT), is a useful tool to identify fractures [14]. However,
radiologists frequently miss fractures, especially if they are not specializing in
musculoskeletal imaging; with the average error rate being higher than 50% [18].
At the same time, rapidly evolving low dose CT programs, e.g., for lung cancer,
provide a solid basis for opportunistic screening of vertebral fractures.

The medical image computing community thoroughly investigated fractures
detection and/or classification on vertebrae-level [1,5,24,27], whole study-level
[2,26], or jointly on both levels [19], see Sect. 2 for more details. Many of these
approaches require prior vertebrae detection [1,19,27], or spine segmentation
[2,5,24]. Though both problems are active areas of research with prominent
results, fractured vertebrae are the most complex cases for these algorithms [25],
and even good average detection/segmentation accuracy may not be sufficient for
accurate fracture estimation. As a result, researchers had to exclude some studies
from the subsequent fracture classification due to errors in prior segmentation
[27], or due to scoliosis [26].

Fig. 1. Overview of the proposed model. Step 1: a) localizing vertebrae centers in 3D
CT (a sagittal projection is shown); b) generating a new 2D image via spine ‘straight-
ening’. Step 2: c) identifying key-points and the corresponding heights; d–e) a closer
look at some vertebrae (colors denote the fracture severity). Finally: f) the original
image with estimated fracture severities. (Color figure online)

The second important issue is the mismatch between computer science prob-
lem statements and the radiological way to define fractures. The Genant scale
[7] is a widely used medical criterion recommended by the International Osteo-
porosis Foundation [6]. It relies on the measurements of ha, hm, hp - the anterior,
middle and posterior heights of vertebral bodies (Fig. 1d, 1e):
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G =
min{ha, hm, hp}
max{ha, hm, hp} , (1)

G values provide an easy to interpret continuous index, whereas existing methods
are usually trained to predict a binary label extracted from radiological reports
[2,26] or multiclass labels based on threshold levels for G [5,27]. A related prob-
lem is the interpretability of the methods’ outputs. The only available informa-
tion is the network’s attention [26] or a similar score [19] somehow related to the
probability of fracture presence.

Our contribution is two-fold. First, we propose a new method to identify the
vertebral column in 3D CT and, as a consequence, reducing the problem to 2D
by producing the corresponding mid-sagittal slice [4] to measure ha, hm, hp for
each vertebra (Fig. 1a, b). Our method is trained to directly solve the localization
problem rather than spine segmentation and demonstrates excellent localization
quality with the average error less than 1 mm. Also, it allows us to process all
studies with no exceptions, including cases with severe scoliosis. Second, our
method estimates six keypoints to detect each vertebra and estimate its heights
h∗ simultaneously (Fig. 1c–e), which results in excellent fracture classification
quality with the area under ROC curve equal to 0.93. The predictions are highly
interpretable as they can be validated by a doctor using a simple ruler.

2 Previous Work

The automatic classification of vertebral fractures has received much atten-
tion from the medical image analysis community. A quantitative image anal-
ysis method was proposed in [5] to classify individual vertebra. First, the spinal
column is segmented by an external method detecting intervertebral intervals.
Then each vertebra is split into 17 sections to extract a set of simple features
such as mean density from the segmentation mask. Finally, a support vector
machine classifies vertebrae based on the obtained 51 features. The system pro-
vides excellent sensitivity (98.7%) but quite low specificity (77.3%). A similar
approach was used in [27] where authors calculated computer vision features such
as histograms of oriented gradients from vertebra masks and achieved ROC AUC
0.88. A plain deep learning-based version of this two-step approach was proposed
in [1], where classical ResNet was trained on 3-channel 2D images obtained from
the prior segmentation mask by taking central sagittal, axial and coronal slices
for each vertebra.

It is important to note that all the methods above rely on prior segmentation,
which may result in removing some cases with severe abnormalities. Indeed, the
authors of [27] reported that 11 cases out of 154 were excluded from the analysis
due to incorrect prior spine segmentation largely caused by high-grade fractures.

This requirement was relaxed in several papers. In [19] the authors proposed a
two-step pipeline for vertebrae detection: first, a segmentation neural network is
used to generate pixel-level predictions (background, normal, fracture), then the
predicted maps are aggregated. Instead of the whole spine mask, the authors used
the ground-truth coordinates of vertebrae centroids to produce vertebrae-level
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predictions and achieved ROC AUC 0.93. A simple idea was used in [26], where
the authors selected the central sagittal slices as the spine is usually located in the
middle of the image. In particular, they processed only 6.9 central slices per study
(on average). As a result, this approach fails to identify fractures in patients with
at least moderate scoliosis, and they had to exclude 156 out of 869 subjects from
the analysis, primarily due to scoliosis. Though the average prevalence of scoliosis
is 8.85%, it positively correlated with age and increases from 10.95% in 60–69
to 50% in 90+ age groups [11], so this cohort can not be ignored in vertebral
fractures screening. The classification method from [26] consists of a ResNet34
which processes each of the central sagittal slices separately; then the obtained
scores are aggregated by a simple LSTM network.

Finally, an original approach was proposed in [2]. Though the method also
relies on external spine segmentation, the mask is used to extract the spinal cord
and create a new virtual sagittal slice. Next, small patches are extracted from
this slice and classified by a convolutional network; finally, a recurrent neural
network (RNN) is used to aggregate the predictions from each patch. Although
the training database is the largest among the reviewed works (consisting of 1673
cases), the model achieves 83.9% sensitivity (with 93.8% specificity), likely due
to poor study-level binary annotation extracted from the radiological reports.

3 Method

The majority of existing methods are two-step pipelines: first, the spine is local-
ized or segmented; second, individual vertebrae are processed to identify frac-
tures. We follow the same scheme with two major goals:

1. Replace the first part by a more task-specific alternative to avoid the exclusion
of any case from the analysis due to segmentation failures.

2. Create a method capable of directly working with Genant fracture reporting.

The second, more important goal dictated the annotation protocol, which
affects both steps of our method. Following [4], raters were instructed to find
the mid-sagittal slice for each of the visible vertebrae and annotate six keypoints
to measure anterior, middle and posterior heights (Fig. 1d, 1e).

In the first part of our pipeline we predict 3D coordinates of the middle
height keypoints using a 3D fully convolutional neural network with soft-argmax
activation [16]. The predicted coordinates are then used to localize the spine and
to select a sagittal plane which contains all the vertebrae - an idea introduced in
[3] and later applied in [2]. However, we cannot simply choose a sagittal plane
on the original image, because such a plane might simply not exist, e.g. for
patients with severe spinal scoliosis. For this reason the obtained 3D curve is
used to ‘straighten’ the spine and generate a new 2D slice (Sect. 3.1). It is worth
noting that though the input is a 3D CT scan, the annotation is intrinsically
bidimensional, so this dimensionality reduction is essential. The key advantage of
our approach is that we directly use final annotation to find the most appropriate
2D representation of the original 3D image.
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Fig. 2. The spine straightening pipeline: a) a single axial slice; b) an axial slice with
the probability heatmap (red), the cross indicates the resulting point after the soft-
argmax operation; c) the combined points from each slice result in a 3D curve; d)
planes, orthogonal to the curve (for better visualization most planes are omitted); e) a
straightened vertebral column (the planes become parallel); f) the new central sagittal
plane. (Color figure online)

The second part of our network processes the obtained 2D image in order to
localize each vertebra and predict positions of six keypoints. Given the fact that
the number of vertebrae for a given input image is not known a priori, a natural
solution is to use object detection techniques in order to make vertebra-level
predictions without the need for additional postprocessing. Our major insight
is that directly predicting keypoints coordinates relative to the bounding box
center shows a dramatic increase in model quality (Sect. 3.2). We also propose a
combined loss function to enforce good quality of G index in addition to local-
ization and heights estimation parts.

Finally the predictions of the second network are mapped back to 3D in order
to calculate the heights ha, hm, hp and the G index.

3.1 Spine Straightening

We use a 3D UNet-like [17] architecture to predict a 2D probability map on
each axial slice, followed by the 2D soft-argmax operation [16] to obtain spatial
coordinates of the vertebral body central line. We train our network by opti-
mizing mean absolute error between the predicted points and the ones smoothly
interpolated from the annotation of middle height endpoints (Fig. 3a).

By combining the predictions for each axial plane, we obtain a 3D curve.
We then interpolate the image onto a new 3D grid on which the obtained curve
becomes a straight vertical line. The grid is constructed in such a way, so that
the planes normal to the curve become parallel (Fig. 2d–e). Finally we select
a new sagittal plane where all vertebrae are visible. Figure 2 shows a detailed
illustration.

3.2 Vertebrae-Level Predictions

The object detection step of our method is mainly based on YOLO9000 [20] and
YOLOv3 [21] with several modifications, in order to adapt it to the specifics
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of the given task. Similarly to YOLO9000, our architecture consists of a sin-
gle Region Proposal Network (RPN), that makes predictions relative to a set
of anchor boxes, and doesn’t require ROI-pooling [22] and any further refine-
ment. Additionally, YOLOv3 uses Feature Pyramid Networks (FPNs) [15], which
enables it to make accurate predictions on various scales. As we know that the
range of shapes a vertebra can have is quite narrow, we use a simple UNet-
based [23] architecture instead. Finally, as opposed to the YOLO family, our
RPN makes predictions in the original resolution, because we favor accuracy
over speed.

Fig. 3. Target generation steps: a) example of an annotated vertebra; b) the generated
axis-aligned bounding box (green, dashed); c) the keypoints’ coordinates relative
to anchor box’ center; d) the objectness O is 1, if IoU between the boxes is greater
than 0.5 (Color figure online)

The target generation pipeline is shown in Fig. 3. Note, that, because
our goal is to assign 6 keypoints per vertebra, we don’t really need to predict
bounding boxes. Instead, we generate axis aligned bounding boxes (Fig. 3b, d) to
calculate intersection-over-union (IoU) at both train and test time. We encode
the target keypoints coordinates by using the same scale- and shift-invariant
encoding as in [22]:

ex = (gx − ax)/aw; ey = (gy − ay)/ah, (2)

where (gx, gy), (ex, ey) are the global and encoded coordinates of a given key-
point respectively, (ax, ay) - is the center of an anchor box, and (aw, ah) are
its width and height (Fig. 3). We selected the following anchor boxes’ scales:
17, 23, 28, 35 mm and aspect ratios: 0.8, 1.1, 1.3, 2.

Finally, we propose the following loss function to train our second network:

L = BCE(ô, o) +
1

∑

i

I[oi = 1]

∑

i

I[oi = 1]
Gi

· MAE(êi, ei), (3)

where both sums are calculated over all vertebrae in the training batch, BCE
is the standard log-loss between real (o) and predicted (ô) objectness (Fig. 3d),
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MAE is the mean absolute error between real (ei) and predicted (êi) encoded
keypoints’ coordinates (2) for the i-th vertebra and Gi is the respective Genant
score (1).

4 Data

Our dataset consists of 100 chest CT. It represents a randomly selected subset
of a publicly available dataset.1 The images have various voxel spacing ranging
from .5× .5× .8 mm to 1 × 1× .8 mm and different numbers of visible vertebrae:
from 10 to 15.

The data was annotated by 7 experts with 1 to 5 years of experience in
radiology and a board-certified radiologist with 12 years of experience in the field.
In total the dataset contains 1268 annotated vertebrae with 2–3 annotations per
vertebra. The distribution of vertebral fractures is the following: 125 mild, 80
moderate, 17 severe deformations and 1046 normal vertebrae. Patient-wise we
have a somewhat balanced distribution with 30, 16, 41 and 13 patients with
none, mild, moderate and severe deformations respectively.

5 Results

5.1 Experimental Setup

In all of our experiments the only preprocessing we use is intensity normalization
to zero mean and unit variance.

We trained our spine straightening network with the Adam [12] optimizer
with default parameters (β1 = 0.9, β2 = 0.999) and a learning rate of 10−3, which
showed the fastest convergence rate. As the architecture operates on whole 3D
images, we reduce the images’ resolution to a spacing of 3 × 3 × 3 mm, the
predicted curve is then linearly interpolated to the original resolution. In such a
setting the network reached convergence after approx. 10k batches of size 3.

Similarly we trained the vertebrae detection network for 4k iterations with
batches of size 30. We start with a learning rate of 10−4 at the early stages of
training and decrease it by a factor of 2 after 1k, 1.4k and 2k iterations, because
gradually decreasing the learning rate enabled the model to reach better optima.

We reported results obtained using fivefold cross-validation. As we have mul-
tiple annotations per study, we also report the inter-expert variability. To obtain
patient-level predictions, we use the most severe fracture among all the verte-
brae, which is equivalent to taking the minimal Genant score.

5.2 Method Performance

We report the localization quality of the first step of our method in Table 1, left.
To calculate these numbers, we found the closest annotated vertebrae in 3D.
Also, we report 2D detection metrics for the second network, see Table 1, right.
1 https://mosmed.ai/datasets/ct lungcancer 500.

https://mosmed.ai/datasets/ct_lungcancer_500
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Table 1. Vertebral body centers localization and vertebrae detection metrics. Columns
with white background denote the average (std) number for all vertebrae, the ones with
grey background - for Moderately and Severely fractured vertebrae (G ≤ 0.74). The
ground truth G-index is not defined for false positives, so Precision is reported for all
vertebrae only.

Localization, mm Recall Precision

Proposed 0.97 (0.64) 1.14 (0.69) 0.997 (0.003) 1.000 (0.000) 0.993 (0.002)

Experts 1.01 (0.98) 1.17 (0.78) 0.983 (0.006) 0.973 (0.013) 0.996 (0.001)

Table 2. Binary classification metrics for various grades of fractures: at least Mild
(G ≤ 0.8) and at least Moderate (G ≤ 0.74). All numbers are given as mean (std).
Columns with white background denote vertebrae-level predictions, the ones with grey
background - patient-level predictions.

Grade G by ROC AUC Specificity Sensitivity

Mild
Proposed .87 (.02) .93 (.03) .93 (.01) .68 (.08) .65 (.03) .94 (.03)

Experts .91 (.02) .91 (.05) .91 (.01) .60 (.11) .70 (.05) .90 (.05)

Moderate
Proposed .94 (.02) .93 (.03) .98 (.01) .86 (.05) .75 (.05) .84 (.05)

Experts .98 (.01) .95 (.03) .97 (.01) .83 (.07) .79 (.06) .88 (.07)

To analyze the performance of vertebrae fractures classification, we report
metrics for two threshold values of G following the radiological definition of
severity [7], see Table 2. We assume that the most relevant problem for chest
CT is the identification of at least Moderate fractures (G ≤ 0.74) as healthy
vertebrae in the thoracic spine are wedged, so normal variation can be misclas-
sified as a Mild fracture (0.74 < G ≤ 0.8) [14]. The obtained results are close
to human-level performance on our dataset and comparable with other works.
Similar values of ROC AUC were obtained at vertebra (0.88 [27], 0.93 [19]) and
patient levels (0.92 [26]).

However, we cannot directly compare the performance with other works due
to several factors. First, different definitions of fractured vertebrae are used
across papers. Second, abdominal and pelvis CTs differ from chest CT in the
number of visible vertebrae and anatomy (e.g., the above-mentioned fact con-
cerning a higher error rate in chest CT). This fact motivates us to release our
annotation and provide the community test data for further development.2

Figure 1 shows an example of the inference process on an image from the
dataset. Due to limited space, we refer the interested reader to the supplemen-
tary materials for a broader set of examples. The overall inference takes under
2 s on Nvidia GTX 980ti, with an approximately equal time required for spine
localization and all the subsequent steps (including spine straightening).

2 https://github.com/neuro-ml/vertebral-fractures-severity.

https://github.com/neuro-ml/vertebral-fractures-severity
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6 Discussion

We proposed a new method for automatic identification of vertebrae-level frac-
tures classification using the Genant score, which approaches, and in some cases
surpasses, the inter-expert variability. Our analysis of examples on which the
model performs poorly (some of which can be found in the appendix) shows
that the experts’ variability in these cases is also unusually high. Note that our
method can be easily adapted to more common 2D X-Ray images by simply
dropping the first network. Also, similarly to Mask R-CNN [9], we can extend
our method to predict additional metadata for each vertebra, such as labels or
segmentation masks. Particularly, it would be interesting to validate our method
on the challenging localization and labeling dataset [8].
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