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Abstract
Objective Themain aim of the present systematic reviewwas a comprehensive overview of the Radiomics Quality Score (RQS)–
based systematic reviews to highlight common issues and challenges of radiomics research application and evaluate the rela-
tionship between RQS and review features.
Methods The literature search was performed on multiple medical literature archives according to PRISMA guidelines for
systematic reviews that reported radiomic quality assessment through the RQS. Reported scores were converted to a 0–100%
scale. The Mann-Whitney and Kruskal-Wallis tests were used to compare RQS scores and review features.
Results The literature research yielded 345 articles, from which 44 systematic reviews were finally included in the analysis.
Overall, the median of RQS was 21.00% (IQR = 11.50). No significant differences of RQS were observed in subgroup analyses
according to targets (oncological/not oncological target, neuroradiology/body imaging focus and one imaging technique/more
than one imaging technique, characterization/prognosis/detection/other).
Conclusions Our review did not reveal a significant difference of quality of radiomic articles reported in systematic reviews,
divided in different subgroups. Furthermore, low overall methodological quality of radiomics research was found independent of
specific application domains.While the RQS can serve as a reference tool to improve future study designs, future research should
also be aimed at improving its reliability and developing new tools to meet an ever-evolving research space.
Key Points
• Radiomics is a promising high-throughput method that may generate novel imaging biomarkers to improve clinical decision-
making process, but it is an inherently complex analysis and often lacks reproducibility and generalizability.

• The Radiomics Quality Score serves a necessary role as the de facto reference tool for assessing radiomics studies.
• External auditing of radiomics studies, in addition to the standard peer-review process, is valuable to highlight common
limitations and provide insights to improve future study designs and practical applicability of the radiomics models.
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Abbreviations
IBSI Image biomarker standardization initiative
ICC Intraclass correlation coefficient
IQR Interquartile range
RQS Radiomics quality score

Introduction

The overwhelming enthusiasm toward radiomics is empha-
sized by the ever-growing number of publications in the field
[1, 2]. This high-throughput strategy to mine quantitative data
from medical images searching for novel biomarkers and to
generate decision-support models is deemed a feasible ap-
proach to overcome the limitations of conventional image
interpretation, particularly in oncology [3–5]. The potential
applications of radiomics are seemingly endless across all im-
aging modalities, and according to a survey study, the future
physicians are confident that advanced computer-aided image
analyses will revolutionize radiology for the best [6–9].

Nevertheless, after nearly a decade of research, translation
of radiomics into clinical practice remains a distant prospect,
and there are many unanswered questions about the potential
availability of commercial radiomics tools [10]. Additionally,
reasonable concerns have also been raised that we might be
overlooking negative, unpublished, but potentially valuable
results, i.e., publication bias [11].

Radiomics is a complex multi-step process, and within
each step there are methodological challenges to overcome
in order to ensure the robustness of model’s findings, while
reproducibility and generalizability are often compromised
[12–14]. Aiming to untangle this methodological complexity
and streamline the structure of radiomics pipelines, a set of
recommendations was released in 2017 along with a proposal
of a “quality seal” for published results named Radiomics
Quality Score (RQS) [15]. Although there is still room for
improvement, the RQS has been embraced by the scientific
community and has been mainly used to assess the methodo-
logical quality of previously published radiomics studies in
the setting of systematic reviews [16].

The RQS consists of 16 items, with a total score ranging
from − 8 to + 36 points. The percentage score is derived from
the absolute score and obtained by dividing the total score by
36 [17]. The RQS items may also be grouped into six domains
[18]. Domain 1 covers protocol quality and reproducibility in
image and segmentation (items 1–4), domain 2 reporting of
feature reduction and validation (items 5 and 12), domain 3
biological/clinical validation and utility (items 6, 7, 13, and
14), domain 4 performance index (items 8, 9, and 10), domain
5 demonstration of a higher level of evidence (items 11–15),
and domain 6 open science (item 16).

In the present work, we aim to provide a comprehensive
overview of RQS-based systematic reviews to highlight

common issues and unique challenges in the vast array of
radiomics applications.

Methods

The study was registered on the International Prospective
Register of Systematic Reviews database with the registration
number CRD42021292310.

Article search strategy

The literature search was performed according to PRISMA
(Preferred Reporting Items for Systematic reviews and
Meta-Analyses) guidelines in the electronic databases
(PubMed, Web of Science, Embase, and Scopus) using the
following search query: ((“radiomics” OR “radiomic”) AND
“quality”AND “score”). The systematic reviews that reported
radiomic quality assessment performed according to the RQS
and published until December 31, 2021, were included.
Letters, editorials, duplicates, original articles, literature re-
views, and RQS systematic reviews published in languages
other than English were excluded from the analysis. The in-
cluded articles were selected by consensus of four radiologists
experienced in radiomics/texture analysis, systematic litera-
ture review, and RQS assessment. In Fig. 1, the results of
the article selection are shown.

Data extraction and analysis

The RQS comprises six domains (image protocol, radiomics
features extraction, data analysis and statistics, model valida-
tion, clinical validity, and open science) and 16 items. By
assessing each item, a final score will be determined, which
is presented on a scale of − 8 to 36 and can be converted to a
percentage (where scores below 0 accepted as 0 and 36 equals
100%), as reported by Lambin et al [15]. Details of the RQS
domains and items along with the scores can be found in the
supplementary materials. The same group of radiologists
(A.S. and L.U.: 5 years of experience, C.F. and T.A.D.: 2
years each) also extracted the data from all included studies
and collected the median or mean of RQS from included
studies.

Moreover, the included studies were classified based
on the following characteristics: (1) oncological versus
non-oncological target; (2) neuroradiology versus body
imaging focus; (3) single versus multiple imaging modal-
ities; (4) aim of the studies that included to systematic
reviews (characterization, detection, prognosis prediction,
or other).
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Statistical analysis

All the analyses were performed using the mean RQS percent-
age scores reported in each systematic review, after conver-
sion of the median values to corresponding means [20]. When
necessary, raw data from included studies were retrieved to
calculate mean RQS percentage scores. The relation between
the study quality and article subgroups was tested. The nor-
mality of the data distribution was assessed with the
Kolmogorov-Smirnov test. To compare variables with a
non-normal distribution, aMann-Whitney test was performed.
The Kruskal-Wallis test was used to compare multiple contin-
uous variables. Continuous variables are presented as median
and interquartile range (IQR), categorical ones as count and

percentage. All statistical analyses were performed using
SPSS (SPSS version 27; SPSS). Alpha level was set to 0.05.

Results

Literature review

The initial literature research resulted in 345 articles, of which
210 were duplicates. Finally, 44 studies were selected from
the remaining 135 because 91 articles did not meet the inclu-
sion criteria. The study flowchart is shown in Fig. 1 and all
systematic reviews included in this study are listed in Table 1.

Fig. 1 The literature research
flow diagram. Adapted from: The
PRISMA 2020 statement: an
updated guideline for reporting
systematic reviews [19]
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Table 1 Characteristics of the included systematic reviews

First author Year Journal Organ system n of studies Mean %

Abdurixiti [21] 2021 British Journal of Radiology Lung 6 35

Abunahel [22] 2020 European Radiology Pancreas 72 29

Bhandari [23] 2020 Abdominal Radiology Kidney 13 31

Bhandari [24] 2020 American Journal of Neuroradiology Brain 14 29

Calabrese [25] 2021 Journal of Cancer Research and Clinical Oncology Breast 10 30

Carbonara [26] 2021 Journal of Oncology Head and Neck 8 21

Castillo [27] 2020 Cancers Prostate 13 51

Chen [28] 2021 European Journal of Nuclear Medicine and Molecular Imaging Lung 10 30

Chetan [29] 2020 European Radiology Lung 14 21

Crombe [30] 2020 European Journal of Radiology Soft tissue 52 18

Davey [31] 2021 European Journal of Radiology Breast 41 18

Fornacon-wood [32] 2020 Lung Cancer Lung 43 21

Granzier [33] 2019 European Journal of Radiology Breast 16 12

Harding-theobald [34] 2021 Alimentary Pharmacology and Therapeutics Liver 54 25

Janssen [35] 2021 Annals of Surgery Pancreas 23 21

Kao [36] 2021 In Vivo Esophagus 7 26

Kao [37] 2021 Diagnostics Lung 7 39

Kendrick [38] 2021 Frontiers in Oncology Prostate 17 23

Kim [39] 2021 Neuro-Oncology Advances Brain 7 3

Kozikowskim [40] 2021 European Urology Focus Bladder 8 41

Lecointre [41] 2021 European Journal of Surgical Oncology Uterus 17 15

Muhlbauer [42] 2021 Cancers Kidney 113 14

Nardone [43] 2021 Radiologia Medica Multiorgan 48 21

Park [44] 2020 European Radiology Multiorgan 77 26

Park [18] 2020 BMC Cancer Brain 51 22

Ponsiglione [45] 2021 European Radiology Cardiovascular 53 12

Sanduleanu [17] 2018 Radiotherapy and Oncology Multiorgan 41 22

Shi [46] 2021 European Journal of Radiology Lung 28 19

Spadarella [47] 2021 European Journal of Radiology Pharynx 24 21

Staal [48] 2021 Clinical Colorectal Cancer Large bowel 76 13

Stanzione [49] 2020 European Journal of Radiology Prostate 73 23

Tabatabaei [50] 2021 Oncology Brain 18 76

Ugga [51] 2021 Neuroradiology Brain 23 19

Ursprung [52] 2020 European Radiology Kidney 57 9

Valdora [53] 2018 Breast Cancer Research and Treatment Breast 17 33

Wakabayashi [54] 2019 Hepatology International Liver 23 23

Walls [55] 2021 Clinical Oncology Lung 44 17

Wang [56] 2020 European Radiology Hematology 45 14

Wang [57] 2021 Cancers Liver 22 28

Wesdorp [58] 2020 European Journal of Nuclear Medicine and Molecular Imaging Gastrointestinal 60 23

Wesdorp [59] 2021 Surgical Oncology Gastrointestinal 14 19

Won [60] 2021 European Journal of Radiology Brain 25 15

Won [61] 2020 Korean Journal of Radiology Brain 26 10

Zhong [62] 2021 European Radiology Bone 12 20
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Study features and subgroup analysis

Study features are summarized in Table 2. Additional details
are reported in the supplementary materials. The median of
RQS was 21.00% (IQR = 11.50). In 36 systematic reviews,
quality assessment was performed by 2 or more readers (36/
44, 81%). Discrepancies were evaluated in different ways: 11/
44 studies assessed agreement intraclass correlation coeffi-
cient (ICC) or Cohen’s kappa, and 2 authors reported the
mean of RQS score, while 23 authors chose consensus for
reproducibility evaluation. The remaining studies (8/44,
18%) did not specify the reproducibility test. As shown in
Fig. 2, the highest mean RQS score of 27.50% reported in
systematic reviews published in the year 2018 while the low-
est RQS was reported in 2019. Most of the review articles
focused on oncological radiomics studies (40/44, 90%); ten
out of forty-four (22.7%) reviews were focused on neuroradi-
ology radiomics articles. Twenty-five percent of systematic
reviews included 50 or more studies in the main analysis
(11/44), with a range between 6 and 113 articles included.
Furthermore, the systematic reviews with a body imaging top-
ic included 33 articles on average, while neuro-imaging re-
views covered a mean of 20 studies. Notably, 38% (17/44)
of articles were focused on one imaging technique, in which
most of them selected MRI (16/44, 36%). In Fig. 2, mean
RQS% of selected systematic reviews in each year were re-
ported, while in Fig. 3, the mean RQS% of each review in-
cluded are described. The mean RQS% separated according to
the systematic review characteristics is shown in Figs. 4 and 5.

The results of the subgroup analysis according to the sys-
tematic review features did not demonstrate any significant
difference between subgroups (Figs. 4 and 5).

Discussion

In recent years, the number of published radiomics studies has
been increasing exponentially, notably in the field of oncolog-
ical imaging [63]. This is mainly due to the promising results
in this area, made possible thanks to the use of artificial
intelligence/machine learning approaches instead of classical

statistical tests and expert systems, capable of analyzing such
a large amount of quantitative data and producing classifica-
tion or prediction models. As a result of the overwhelming
number of studies in this field, the need for providing research
guidelines has arisen to ensure better standardization and
homogenization. In this context, the image biomarker stan-
dardization initiative (IBSI), an independent international
collaboration, has been working toward standardizing the
extraction of image biomarkers from acquired imaging.
IBSI provides an image biomarker nomenclature and spe-
cific feature definitions, as well as a general image process-
ing workflow, tools for verifying radiomics software
implementations, and reporting guidelines for radiomics
studies [64]. Together with the need for standardization,
the need for a tool for qualitative assessment and compar-
ison of extremely heterogeneous radiomics methodologies
has also arisen. In relation to this question, Lambin et al
introduced the radiomics quality score (RQS) in 2017 [15].
The RQS followed previous efforts that did not focus on
radiomics, such as the transparent reporting of a multivar-
iable prediction model for individual prognosis or diagno-
sis statement published in 2015 [65]. The aim of the RQS
is to evaluate the methodological quality of radiomics-
based investigations, identifying high-quality results as
well as issues limiting their value and applicability.
However, as stated by the creators of the RQS themselves,

Table 2 Median RQS percentage scores for review subgroups

Characteristics Statistical analysis Median RQS% (n of studies) p value

Body/neuroradiology/other* Anova Kruskal-Wallis 23.6 (31)/23.6 (10)/23.0 (3) 0.586

Oncology/not oncology Mann-Whitney 27.3 (40)/20.3 (4) 0.396

Single modality/2 or more modalities Mann-Whitney 27.3 (17)/20.3 (27) 0.277

Characterization/detection/prognosis/other** Anova Kruskal-Wallis 27.2 (14)/27.0 (4)/21.3 (10)/19.6 (13) 0.413

*Systematic reviews not covered by neuroradiology or body imaging categories

**Systematic reviews not covered by characterization/detection/prognosis target

Fig. 2 Bar plot reporting the mean RQS percentage score by year of
publication

European Radiology



this score was not conceived as an external auditing tool to
express a qualitative appraisal in absolute terms or to con-
duct systematic reviews, but rather as a practical checklist
to guide researchers in study designing and to give them
the possibility to justify any methodology noncompliance
[16]. However, in practice, this tool has become the de
facto standard for systematic reviews of the literature fo-
cused on radiomics quality assessment as confirmed by our
findings. In any case, it should be acknowledged that some
alternatives have been proposed, even though their use is
usually sporadic [66, 67]. Additionally, several checklists

have been presented in the recent literature, including the
Checklist for Artificial Intelligence in Medical Imaging,
Minimum Information for Medical AI Reporting checklist,
and currently under development artificial intelligence ex-
tensions of the Transparent Reporting of a multivariable
prediction model of Individual Prognosis Or Diagnosis
statement and the Prediction model Risk Of Bias
Assessment Tool [68–70]. However, these are not tailored
for use in radiomics specifically, but are focused on ma-
chine learning modeling and correct management of the
data in relation to model bias. Also, their nature as

Fig. 3 Mean of RQS percentage
score of each review included in
this study
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checklists does not allow a formal methodological quality
score, but rather an unweighted assessment of overall ad-
herence to the included items.

Regarding the use of RQS to perform an external assess-
ment of methodological quality in radiomics studies, its po-
tential lack of reproducibility may represent an issue. Only in a
minority of the studies included in our systematic review, the
authors performed an assessment of the RQS’s inter-reader
reproducibility, either through the intraclass correlation coef-
ficient or Cohen’s K. In several cases, a consensus approach
was employed with multiple raters, which may represent a

valid solution to ensure the score’s reliability. The assessment
of the RQS’s reproducibility, also accounting for differences
in raters’ experience levels, may represent an avenue of future
research of itself if its use for systematic study quality auditing
will continue. It would also be ideal to identify a standard
practice on this topic, either requiring inclusion of an inter-
reader reproducibility analysis or a consensus approach for all
future RQS-based reviews. This would mitigate concerns re-
garding possible biases in the final scores.

Another limitation of the RQS pertains to its use for deep
learning–based studies. Several authors have used the RQS to
assess the quality of this type of research, but the RQS items
are not perfectly suited for this task. On one hand, it can be
argued that computer vision neural networks, especially when
based on convolutions, essentially extract quantitative features
that can be assimilated to typical radiomics parameters.
However, the processing of this data diverges from the classi-
cal feature processing, selection, and model tuning pipeline of
radiomics. Probably, the appropriateness of the RQS should
be evaluated on a case-by-case basis for deep learning re-
search. In the future, it could be appropriate to develop dedi-
cated tools tailored to address both classical machine learning
and deep learning radiomics analyses, sharing part of the items
but diverging as necessary to avoid biases [41]. In this setting,
the information contained in the previously mentioned
healthcare artificial intelligence modeling checklists could
prove valuable to complement the original RQS.

It should also be noted that the average RQS across all
included reviews was low (median = 21.00%; IQR = 11.50).
This, not only, supports the conclusions drawn by each indi-
vidual review that the methodological quality and/or thor-
oughness of its presentation within scientific studies is still
far from ideal but also raises questions about the

Fig. 4 RQS percentage score for
different review subgroups

Fig. 5 Box plot depicting the distribution of RQS percentage score by
aim of the studies included in the systematic reviews
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appropriateness of RQS as a qualitative quality measure of
radiomics research. The former is also supported by a recent
investigation of methodological issues in machine learning
research across different domains, including medicine and ra-
diology, which also supports that inappropriate use of data
analysis techniques indeed constitutes a critical issue [71],
while the latter stems from the low variance of reported
RQSs. This limitation of the current landscape of radiomics
research represents undoubtedly one of the main factors pre-
venting the translation of these tools to clinical decision sup-
port systems. Furthermore, as awareness of this problem
grows throughout the medical imaging community, skepti-
cism in the general public will only increase. This negative
perception will probably persist for some time even if the
quality and reliability of radiomics research improve in the
near future. Researchers active in this field should therefore
be particularly incentivized in improving the presentation and
clarity of their methods and ease the reproduction of their
experiments to foster a more positive environment and facili-
tate rather than hinder the adoption of radiomics-based soft-
ware in clinical practice. As shown in our review, unfortunate-
ly, this does not seem to be currently the case. In this setting,
journals and reviewers will probably need to take a more ac-
tive role in raising the bar for minimal quality of radiomics
research to be published. Guiding researchers toward a greater
focus on investigations aiming at improved clinical outcomes
rather than technical feasibility alone would also be a positive
development. Some editors and journals have already begun
to move in this direction, and it is desirable for this trend to
spread at least to the more visible publications in our
field [68, 72, 73].

Based on the results reported in the RQS systematic re-
views included in this investigation, some common trends
emerge. Some points were lacking in all or almost all in-
stances, such as cost-effectiveness and decision curve analy-
ses. Prospectively designed studies are also very rare, which is
a common situation across radiology research compared to
other clinical specialties. More worrisome, there is still a rel-
evant number of studies that do not perform a validation of a
final model, without retraining (e.g., as done in cross-valida-
tion). While cross-validation is a valuable tool to extract more
information from smaller datasets and provide a better esti-
mate of general performance of a pipeline, it is also true that it
does not provide a univocal assessment of a model’s deploy-
ment in a real-world setting. The pairing of cross-validation
for model development and pipeline tuning and external val-
idation of a definite model on a diverse dataset is probably the
best solution. However, understandably, dataset size has to be
adequate to allow both the training and external validation
data to appropriately represent the model’s general population
target. It should also be noted that the RQS also addresses
some items only superficially, such as feature reduction. It
does not include an assessment of the appropriateness of the

techniques applied or the resulting dataset’s size in compari-
son to the number of instances available for training. This
could lead to an overestimation of the study’s RQS score, as
feature reduction accounts for either a − 3 or + 3 score out of
the maximum of 36. Finally, we wish to highlight the lack of
openness in many of the radiomics studies. Sharing the
models and, ideally, the data used to train them is essential
to allow correct assessment of their validity and validation on
data from institutions different from those where they were
developed. These steps are essential to grow trust in radiomics
research and allow development of clinical decision support
tools integrating these types of models.

Our systematic review presents some limitations that
should be acknowledged. We did not aggregate the singular
item data from each RQS-based review included in our study.
This was partly due to the significant divergence in methods
used to perform the rating (consensus, single reader). Also, it
was not our intention to substitute the original studies in their
topic-specific assessment, but rather to provide a wider over-
view of the current radiomics research state of the art.
Therefore, we chose to aggregate the overall RQS percentage
scores to obtain this result.

In conclusion, our review confirms the common sentiment
that radiomics research quality must be increased in the near
future as it is currently unsatisfactory independently of the
study topic. External auditing of these investigations, in addi-
tion to the standard peer-review process, is valuable to high-
light common limitations and provide insights to improve fu-
ture study designs. The RQS serves a necessary role as the de
facto reference tool for this task, but future research should be
aimed at improving its reliability and developing new tools to
meet an ever-evolving research space.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-09187-3.
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