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Abstract: Introduction: Artificial Intelligence (AI) is becoming an essential part of modern radiology.
However, available evidence highlights issues in the real-world applicability of AI tools and mixed
radiologists’ acceptance. We aimed to develop and validate a questionnaire to evaluate the attitude
of radiologists toward radiology AI (ATRAI-14). Materials and Methods: We generated items based
on the European Society of Radiology questionnaire. Item reduction yielded 23 items, 12 of which
contribute to scoring. The items were allocated into four domains (“Familiarity”, “Trust”, “Implemen-
tation Perspective”, and “Hopes and Fears”) and a part related to the respondent’s demographics and
professional background. As a pre-test method, we conducted cognitive interviews with 20 radiolo-
gists. Pilot testing with reliability and validity assessment was carried out on a representative sample
of 90 respondents. Construct validity was assessed via confirmatory factor analysis (CFA). Results:
CFA confirmed the feasibility of four domains structure. ATRAI-14 demonstrated acceptable internal
consistency (Cronbach’s Alpha 0.78 95%CI [0.68, 0.83]), good test–retest reliability (ICC = 0.89, 95%
CI [0.67, 0.96], p-value < 0.05), and acceptable criterion validity (Spearman’s rho 0.73, p-value < 0.001).
Conclusions: The questionnaire is useful for providing detailed AI acceptance measurements for
making management decisions when implementing AI in radiology.

Keywords: artificial intelligence; surveys and questionnaires; radiologists; radiology; attitude
toward computers

1. Introduction

Artificial Intelligence (AI) made significant strides in image analysis, progressively
improving at processing and interpreting complex data [1,2]. One of the most promising
areas of AI application is healthcare, especially radiology [3,4]. The first research on AI
in radiology was published in 1983 [5]. In 1998, the U.S. Food and Drug Administration
approved the first AI for mammography [6]. However, the widespread implementation
of AI in radiology is far from successful. Even though in silico studies generally report
high accuracy of medical AI predictions, these studies face well-deserved criticism due to
poor design, methodological mistakes, and biased reporting [7]. Furthermore, algorithms
trained in “ideal” experimental conditions may experience difficulties transitioning into
complex real-world settings [8].

Despite this, policy makers consider AI a promising tool for optimizing healthcare
operations, which could help to accelerate radiology reporting, reduce the workload of ra-
diologists, and obtain more accurate and reproducible measurements [9]. Many healthcare
organizations are experimenting with integrating AI tools into clinical practice [10]. One
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of the largest projects of this type in the radiology field started in 2020 in Russia, named
“the experiment on the use of innovative computer vision technologies for the medical
image analysis and subsequent application in the Moscow healthcare system” (the Moscow
Experiment) [11]. The Moscow Experiment is carried out by the Moscow Research and
Practical Clinical Center for Diagnostics and Telemedicine Technologies (CDTT) of the
Moscow Healthcare Department (MHD) and involves more than 150 medical centers [12].
The major participant of the Moscow Experiment is the clinical department of the CDTT
(Moscow Reference Center, MRC [13]), which employs more than 400 radiologists who
remotely analyze medical imaging exams for MHD medical centers using AI tools [12].

However, the current results of AI integration into clinical practice are mixed [14].
As the end-users of AI solutions, practicing radiologists might not share the optimistic
outlook of policy makers. Unconvinced by its value, some radiologists may develop a
negative view of AI and sabotage further adoption. An objective assessment of radiologists’
attitudes toward AI can help identify areas requiring special attention from policy makers
and stakeholders.

Several international attempts have been made to develop and apply such assessment
tools, reporting overall positive views with a direct relationship between the AI-specific
knowledge level and attitude toward AI among radiologists [15–19]. However, the pub-
lished results might be associated with selection bias since respondents more interested
in the topic might be more willing to answer and have a better attitude toward AI [19].
Moreover, these tools lack a scoring system for attitude measurement. Validation and
assessment of test–retest reliability, while being the essential steps of a questionnaire’s
development [20,21], have not been conducted for any of these tools in any language. Thus,
the results of these studies may not fully reflect the true attitude toward AI.

Because of the Moscow Experiment, MHD radiologists have gained extensive ex-
perience working with more than 50 AI solutions that address a wide range of medical
tasks with varying efficiency [12]. The combined awareness of medical, scientific, and
administrative staff involved in the Moscow Experiment provides an appropriate medium
for developing a research instrument for collecting objective information about radiologists’
perceptions of AI.

The aim of our study was to develop and validate a questionnaire for the precise mea-
surement of radiologists’ attitudes toward AI and the key factors influencing that attitude.

2. Materials and Methods

This study was carried out in accordance with the guide for the design and conduct of
self-administered surveys of clinicians (Figure 1) [22].
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2.1. Sample Selection

The target population for the questionnaire is licensed radiologists, radiology residents,
and radiology department heads.

2.2. Research Settings

The study settings for the questionnaire development were radiology departments of
outpatient and inpatient clinics, including a teleradiology center (MRC).

2.3. Item Generation

Our questionnaire is based on the European Society of Radiology (ESR) questionnaire,
which has 15 items [15]. A multidisciplinary team of survey researchers included four
scientists with experience in radiology AI tools and one sociologist. Two professional
medical translators performed a linguo-cultural adaptation of the original ESR items to
the Russian-speaking population, according to Vasilev et al. [23]. The ESR questions were
revised, and the new ones were introduced to match the aim of this study. Items were
generated through a combination of in-depth interviews and focus group sessions with
experts. The expert group consisted of six radiologists involved in the Moscow Experiment
with an average of 8.5 years of work experience. When designing the questionnaire items,
we followed the close-ended format to facilitate quantitative analysis through a Likert



Healthcare 2024, 12, 2011 4 of 18

scale ranging from 1 to 5, corresponding to extremely negative and extremely positive
attitudes, respectively.

Some of the questions implied multiple choice. For such questions, the sum of the
selected answers’ individual scores was linearly converted to a Likert scale (Appendix A.1,
Questions P1, P4, and F6 with corresponding explanations).

Additionally, we have developed a background part to gather demographic and
professional information.

2.4. Item Reduction

The list of generated items was assessed by an independent focus group of nine radi-
ologists with 5 years of work experience, on average, involved in the Moscow Experiment.
Each expert independently chose which question should be included in the final version
of the questionnaire. If the majority of experts (five or more) were against the question, it
was removed from the final version. Furthermore, focus group members independently
assessed the phrasing of each question and made adjustments. The research team decided
whether to implement the adjustments after discussion. In the case of five or more similar
expert comments, they were accepted without discussion.

2.5. Questionnaire Formatting

According to the approach of Cane et al., the behavior of healthcare workers associated
with a new technology can be assessed by 14 domains [24]. They include professional
characteristics (Professional Role and Identity, Memory and Attention); familiarity with
the new technology (Knowledge and Skills, Goals and Intentions, and Reinforcement);
trust in the new technology (Beliefs about Capabilities, Optimism); implementation context
and perspectives (Environmental Context and Resources, Social Influences, Beliefs about
Consequences); and personal factors (Emotions, Behavioral Regulation). We used this
approach for our questionnaire domain structure, which consists of the background part
followed by the main part consisting of four domains: “Familiarity”, “Trust”, “Implantation
Perspectives”, and “Hopes and Fears”.

2.6. Questionnaire Composition

For the online questionnaire, we used survey administration software provided by
“Yandex.forms”. Questions were presented in a series of linked pages (multiple-item
screens) with accompanying electronic instructions.

2.7. Pre-Testing

To assess how well respondents understand the items, four survey researchers con-
ducted individual interviews with 20 radiologists similar to the sampling frame. The aim
of the interviews was to determine whether the respondents interpreted the question in the
way it was intended [25].

2.8. Sample Size Estimation

Sample selection for questionnaire validation was performed to be representative
of the Moscow radiologists’ population. As of 30 September 2022, there were 1600 ra-
diologists in Moscow, 28.1% of whom were employees of MRC [26]. According to the
Sample Size Calculator for Reliability Studies, for the expected Cronbach’s alpha 0.7, preci-
sion ±0.1, 95% confidence level, and 16 items, the minimally acceptable sample size should
be 79 radiologists (5% of the target population) [27]. To maintain the class balance in the
target population, the sample has to include at least 23 MRC radiologists.

2.9. Pilot Testing with Reliability and Validity Assessment

Metrics used for reliability and validity assessment are described in Table 1.
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Table 1. Methods used to assess reliability and validity.

Parameter Method Threshold Values

Test–retest reliability Interclass Correlation Coefficient, ICC

<0.5—poor
0.5–0.75—moderate

0.75–0.9—good
>0.9—excellent [23]

Internal consistency Cronbach’s alpha

≤0.5—unacceptable
>0.5—poor

>0.6—questionable
>0.7—acceptable

>0.8—good
>0.9—excellent

[23]

Face validity Experts evaluate whether the questionnaire
measures what it intends to measure. More than 75% of experts [28]

Content validity
Experts evaluate whether questionnaire

content accurately assesses all fundamental
aspects of the topic.

More than 75% of experts [28]

Construct validity Confirmatory factor analysis

Comparative Fit Index (CFI) ≥ 0.9
Root Mean Square Error of

Approximation (RSMEA) < 0.08
Standardized Root Mean Squared

Residual (SRMR) < 0.08
Tucker–Lewis Index (TLI) ≥ 0.9 [29]

Criterion validity Correlation with visual analogue scale

<0.10—negligible correlation
0.10–0.39—weak correlation

0.40–0.69—moderate correlation
0.70–0.89—strong correlation

≥0.90—very strong correlation [30]

Survey researchers with an expert group assessed face validity and content validity.
Every member of both teams voted “yes” or “no” on the questions “Does the questionnaire
measure what it intends to measure?” and “Does questionnaire content accurately assess all
fundamental aspects of the topic?”. If the majority of respondents (eight or more) answered
“yes”, the final answer was considered positive.

To assess construct validity, we conducted confirmatory factor analysis (CFA). CFA
was performed to test the correspondence between item loadings and the questionnaire
domain structure and highlight items requiring revision or removal from a domain.

To assess criterion validity, we performed a correlation analysis of the ATRAI-14 final
score with the self-reported visual analogue scale (VAS) score (from 1 to 10, corresponding
to extremely negative and extremely positive attitudes, respectively).

Reliability was assessed by test–retest reliability and internal consistency. The sam-
ple size for test–retest reliability was calculated according to Vasilev et al., resulting in
20 respondents [23], who filled out the questionnaire twice with a washout period of 14 days
in the presence of a survey researcher. Internal consistency was assessed by Cronbach’s
alpha evaluation for the main part of ATRAI-14.

2.10. Statistical Data Analysis

Data analysis was carried out using the R programming language, v.4.3.1, with
additional usage of psych v.2.4.6 [31], lavaan v.0.6-18 [32], ltm v.1.2-0 [33], and ICC
v.2.4.0 [34] packages. The Holm–Bonferroni correction was used for multiple compar-
isons. p-value < 0.05 was considered statistically significant for all statistical tests.
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3. Results

We have developed the ATRAI-14 questionnaire to assess radiologists’ attitudes toward
the implementation of AI tools. The questionnaire consists of four domains—“Familiarity”,
“Trust”, “Implementation Perspective”, and “Hopes and Fears” (Figure 2). The full set of
questions may be found in the Appendix A.1 and also on the web page [35].
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The “Familiarity” domain aims to evaluate respondents’ personal experience with the
AI tools. It considers three areas of experience: clinical practice, development and testing,
and participation in clinical trials.

The “Trust” domain evaluates respondents’ perception of the quality and reliability of
current AI tools.

The “Implementation Perspective” domain assesses respondents’ perception of policy
makers’ and stakeholders’ initiatives regarding AI tool implementation and infrastructure
preparedness.

The “Hopes and Fears” domain evaluates respondents’ perception of the potential
influence of AI implementation on their personal and career path.

The “Trust”, “Implementation Perspective”, and “Hopes and Fears” domains evaluate
different aspects of a respondent’s attitude toward AI tools. The ATRAI-14 final score is
a sum of these domains’ weight-adjusted scores (Appendix A.2). The maximum score
is 36, and the minimum score is 0; a higher score corresponds to a better attitude. The
“Familiarity” domain does not contribute to the total score but provides quantitative data
for the survey population pooling by professional experience with AI.

3.1. Item Generation and Reduction

We developed four items for the “Familiarity” domain and six items for each domain
contributing to scoring (Figure 2). The background part (nine items) gathered demographic
and professional information, including AI-using experience. None of the questions re-
quired identifying information. The total number of items was 31.

An independent focus group assessed the list of generated items, choosing to remove
five items and correct eleven items (Figure 3).
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3.2. Pre-Testing

Individual interviews with 20 radiologists, similar to the sampling frame, did not
identify major cognitive biases in the questions’ interpretation. However, we removed one
question due to ambiguous perception and rephrased five items (Figure 3).

3.3. Pilot Testing

We distributed a web-based questionnaire form to the randomly chosen sample of
Moscow radiologists. In total, 90 respondents filled out the questionnaire: 65 (72%) from
MHD medical centers and 25 (28%) from MRC. All the questions were mandatory, so the
obtained data had no missing values.

Among the respondents, there were 3 (3%) heads of radiology departments, 72 (80%)
radiologists, and 15 (17%) radiology residents. Twenty-five (28%) respondents indicated
that they participate in medical research activities. Among 63 (70%) respondents with
1+ years of professional experience, the median experience was 7 years (IQR 3 to 12 years).
Three equal groups of respondents in the sample provided interpretations of a single
imaging modality (usually computed tomography, CT), two modalities (the most common
combination was radiography and CT), and three or more modalities, respectively. There
were 57 (63%) and 10 (9%) adult and pediatric radiologists, respectively, with the rest
interpreting studies of patients of all ages. Sixty-nine (77%) respondents indicated they
have access to medical AI tools.
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The majority of questions had substantial correlations within their domain. However,
three questions showed weak correlation within their own domain and strong relationships
with items from other domains. After the discussion with the expert group, two of these
items were removed, and one was relocated to the appropriate domain. The final ATRAI-14
version has 23 questions composed of 14 main part items and 9 background part items.

According to the correlation matrix (Figure 4), there was no significant negative corre-
lation between items from the domains contributing to scoring (“Trust”, “Implementation
Perspective”, and “Hopes and Fears”). Correlation analysis confirmed that all the items
measure the attitude in the same direction.
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Figure 4. Questionnaire correlation matrix. × marks beyond the diagonal denote statistical sig-
nificance without multiple comparison correction. × marks above the diagonal denote statistical
significance with Holm–Bonferroni correction for multiple comparisons. Black outlined squares
highlight automatically detected domains (from up to bottom): “Hopes and Fears” (items with “H”
prefix), “Implementation Perspectives” (prefix “I”), “Familiarity” (prefix “F”), “Trust” (prefix “T”).
Brown boxes represent negative correlation; blue boxes represent positive correlation.

There was a weak significant correlation between items from the domains “Implemen-
tation Perspectives” and “Trust” (Figure 4). However, within these domains, the items had
correlation strength varying from moderate to strong (Figure 4), which implies the correct
distribution of items between the domains.

A weight adjustment was performed to compensate for the removal of items from the
domains “Implementation Perspectives” and “Hopes and Fears” (Appendix A.2).

3.4. Validity
3.4.1. Face Validity and Content Validity

According to the survey researchers and expert group assessment, all questions of the
final version of the ATRAI-14 questionnaire were considered valid.

3.4.2. Construct Validity

Confirmatory factor analysis (CFA) demonstrated that item loadings within a four-
factor structure yield appropriate goodness-of-fit indices: RMSEA = 0.049, CFI = 0.95,
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TLI = 0.93, and SRMR = 0.067. For comparison, we performed CFA using a one-factor
model, which demonstrated a worse fit with indices RMSEA = 0.11, CFI = 0.72, TLI = 0.66,
and SRMR = 0.10. Item loadings of 13 out of 14 questions exceeded 0.55, demonstrating
high adequacy of the factors and implying a good fit of the four-factor model (Table 2).
Question H4 had the lowest loading score of 0.35 out of all items. However, this score
still represents significant correspondence of the item to its domain. Thus, CFA results
were consistent with the results of correlation analysis, supporting our assumption of the
questionnaire’s four-domain structure.

Table 2. Factor loadings of the four-factor model.

Item

Standardized Factor Loadings (SE)
p-ValueFactor 1

Familiarity
Factor 2

Trust
Factor 3

Implementation Perspective
Factor 4

Hopes and Fears

F1 0.71 (0.16) - - - <0.001

F4 0.75 (0.18) - - - <0.001

T1 - 0.86 (0.11) - - <0.001

T2 - 0.82 (0.12) - - <0.001

T3 - 0.95 (0.12) - - <0.001

T4 - 0.79 (0.13) - - <0.001

T6 - 0.6 (0.1) - - <0.001

I1 - - 0.88 (0.13) - <0.001

I2 - - 0.56 (0.19) - 0.003

I4 - - 0.86 (0.11) - <0.001

H6 - - 0.75 (0.14) - <0.001

H1 - - - 0.67 (0.17) <0.001

H4 - - - 0.35 (0.15) 0.022

H5 - - - 0.71 (0.16) <0.001

3.4.3. Criterion Validity

The median ATRAI-14 score was 17.3 points (IQR 13.6 to 20.18 points), with a mini-
mum of 2 points and a maximum of 27.5 points (Figure 5A). The median self-assessment
according to the VAS was 5 points (IQR 4 to 7 points) (Figure 5B).
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The correlation analysis demonstrated that the ATRAI-14 score had a strong correlation
(Spearman’s rho 0.73, p-value < 0.001) with the self-reported attitude toward AI assessed
by the VAS (Figure 6). These results support the measurement functioning of ATRAI-14.
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3.5. Reliability

ATRAI-14 demonstrated good test–retest reliability (ICC = 0.89, CI [0.67; 0.96],
p-value < 0.05) and acceptable internal consistency (Cronbach’s Alpha 0.78 95%CI [0.68, 0.83]).

4. Discussion

We developed and validated a questionnaire for the evaluation of radiologists’ attitude
toward radiology AI (ATRAI-14), comprising a background part (9 questions related to a
respondent’s demographics and professional characteristics) and 14 questions of the main
part allocated into four domains: “Familiarity”, “Trust”, “Implementation Perspective”,
and “Hopes and Fears”. Validation study results confirmed the high adequacy of the four-
factor model, with item loadings of 13 out of 14 questions exceeding 0.55. ATRAI-14 has a
high accuracy of attitude measurement (Spearman’s rho 0.73 with self-reported attitude
toward AI assessed by the VAS); acceptable internal validity (Cronbach’s Alpha 0.78, 95%CI
[0.68, 0.83]); and high test–retest reliability (ICC 0.89, 95%CI [0.67; 0.96], p-value < 0.05).

Staff attitude toward innovation can influence work behavior in scenarios where the
innovation is used and ultimately determine the success of its implementation. There are
several methodological issues specific to attitude research, one of which is a measurement
error of self-reported measures of attitudes [36]. To evaluate the criterion validity of
ATRAI-14, we used self-reported attitude toward AI assessed by the VAS (“Assess your
attitude toward Radiology AI” with response options ranging from 0 to 10). We observed
a strong positive correlation between ATRAI-14 and VAS scores (Spearman’s rho 0.73,
p-value < 0.001), which implies that both instruments measure the attitude toward the
same subject. Nevertheless, the relationships between the scores were not perfect. We
believe that the difference is due to the four-domain structure of ATRAI-14 implicitly
considering multiple aspects of a respondent’s attitude toward AI, therefore eliminating
concerns with self-presentation and the lack of introspective access typical for self-reported
measurements [22].

The “Familiarity” domain does not contribute to the total scoring but ranks the survey
respondents by their experience with AI in three areas: clinical practice, development and
testing, and participation in clinical trials. The final score of the questionnaire is a sum
of the “Trust”, “Implementation Perspectives”, and “Hopes and Fears” weight-adjusted
scores, with a maximum score of 36 (12 per domain).

The “Trust” domain measures subjective perceptions of the quality and reliability
of current AI tools. We believe that media coverage of relevant, high-quality studies
and practical workshops where radiologists can get hands-on experience can influence
this domain.
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The “Implementation Perspectives” domain reflects the respondent’s expectations re-
garding the mechanisms and outcomes of AI implementation. In our opinion, transparency
of governmental policies toward AI is important for this domain.

The “Hopes and Fears” domain reflects a respondent’s perception of how AI will
influence their career, including salary, workload, and occupational prestige. Fear of
replacement is strongly associated with a respondent’s knowledge of AI [16], suggesting
integrative education on AI as a valuable tool for influencing this domain.

Thus, the domain structure of ATRAI-14 is essential for determining the correspon-
dence between the itemized attitude score and respondents’ background.

Follow-up surveys using ATRAI-14 can track changes in general attitudes toward AI
and domain-specific dynamics at levels varying from the target population to individual
radiologists. According to the survey results, administrative solutions aimed at successfully
implementing AI could be specifically adapted. A target interaction seems possible for
radiologists who are low on certain domains. Furthermore, group workshops can be
conducted for radiologists with similar backgrounds and problematic domains.

Several attempts have been made to develop AI attitude assessment tools [15,16].
Codari et al. used a 21-item no-domain questionnaire designed by the European Society
of Radiology (ESR). It had seven background items and fourteen main part items about
respondents’ feelings and forecasts regarding the advent of AI applications in radiology [15].
Huisman et al. developed a 38-item questionnaire consisting of several domains to assess
respondents’ views on AI implementation [16,17]. Both questionnaires did not have a
scoring system and were not validated.

The key advantages of ATRAI-14 are (i) quantitative attitude assessment, (ii) good
test–retest reliability and confirmed validity, and (iii) resolution ranging from a population
level down to an individual radiologist. This study has several limitations. During the
development and testing stages, we surveyed only MHD radiologists. We validated the
questionnaire only for the Russian-speaking population. Finally, we introduced weight-
adjusted scores for domains because of differences in the number of items. In future
research, we plan to evaluate the influence of radiologist attitudes toward AI on clinical
decisions made by the radiologist.

Radiology is one of the leading areas of applying technological advancements in
medicine. Potential AI-driven changes in this field might require updating of the ATRAI-14
questionnaire in the future.

5. Conclusions

Here, we present a questionnaire designed to measure the medical AI perception by
radiologists across three domains: “Trust”, “Implementation Perspectives”, and “Hopes
and Fears”. The questionnaire provides a precise estimation of the radiologists’ attitude
toward AI in a resolution ranging from a population level down to individual healthcare
professionals, distinguishing the tool from previous works in the field. The data we report
confirm the construct validity of the questionnaire with high adequacy of the factors, ac-
ceptable internal consistency, and good test–retest reliability. The questionnaire is useful for
providing detailed AI acceptance measurements of its end-users, which may be of particu-
lar value for making informed and directed management decisions when implementing
AI-based software in radiology departments.
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Appendix A. ATRAI-14 Questionnaire

Appendix A.1. Questionnaire

Radiologists’ Views on the Implementation of Artificial Intelligence in Diagnostic Imaging
(ATRAI-14).

Circles denote one answer questions, squares mark multiple answer questions.

1. P1. State your job title (one answer)

Resident #

Radiologist #

Head of radiology department #

Other (fill in) #

2. P2. Working place (one answer)

University Hospital #

Public Hospital #

Teleradiology Center #

Private Hospital #

Other (fill in) #

3. P3. State the type of medical facility you work at/study in (select all that applies)

Outpatient department □

In-patient department □

Day-case unit □
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4. P4. What imaging modalities do you interpret on a daily basis? (select all that applies)

Radiography □

Mammography □

Ultrasound □

CT □

MRI □

Tomosynthesis □

Nuclear imaging □

Cone-beam CT □

Other (fill in) □

5. P5. What is the age of the patients you interpret studies for? (one answer)

<18 years old #

≥18 years old #

I work with patients of all ages #

6. P6. State the anatomical regions/organ systems that you interpret most often (select
all that applies)

I report all anatomical regions/organ systems □

Abdomen □

Thorax □

Breast □

Urogenital □

Musculoskeletal □

Neuroradiology □

Cardiovascular □

Pelvis □

Head and neck □

7. P7. State your total experience, in years, as a radiologist (excluding internship and
residency)

8. P8. Do you partake in scientific research related to your medical activity? (one answer)

Yes #

No #

9. P9. Do you have the opportunity to use artificial intelligence (AI) tools at work to
interpret imaging studies? (one answer)

Yes #

No #
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Familiarity

10. F1. Do you use AI tools to interpret imaging studies? (one answer)

Answers: label

Yes, regularly, for various tasks (example: for routine measurements or incidental findings detection) # 4

Yes, regularly, a specific AI tool for a single task (example: to measure abdominal aorta diameter) # 3

Yes, sometimes, depending on the task # 2

Not yet, but I plan to # 1

No, and I do not plan to # 0

11. F4. How often do you participate in AI research projects? (one answer)

Answers: label

Very often # 4

Sometimes # 3

Participated once or twice # 2

Not yet, but I would want to # 1

No, and I do not want to # 0

Trust

12. T1. In the next 5 years, do you think you will be comfortable trusting autonomous AI to
interpret imaging studies (an AI that acts without radiologist oversight)? (one answer)

Answers: label

Yes # 4

Mostly yes # 3

Difficult to answer # 2

Mostly no # 1

No # 0

13. T2. Do you trust the work of an AI tool outputting only «pathology present/study
unremarkable»? (example: the presence or absence of liver lesions) (one answer)

Answers: label

Yes # 4

Mostly yes # 3

Difficult to answer # 2

Mostly no # 1

No # 0

14. T3. Do you trust the result of an AI tool outputting only a quantitative indicator (ex-
ample: aortic diameter, pleural effusion volume, vertebral body height)? (one answer)

Answers: label

Yes # 4

Mostly yes # 3

Difficult to answer # 2

Mostly no # 1

No # 0
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15. T4. Imagine—you read an imaging study and found no pathology, but an AI tool
contradicts your opinion. Would this be reason enough for you to double check the
study? (one answer)

Answers: label

Yes # 4

Mostly yes # 3

Difficult to answer # 2

Mostly no # 1

No # 0

16. T6. Which way of interacting with an AI tool would be preferable for you? (one
answer)

Answers: label

AI autonomously interprets a part of a study # 4

AI performs routine measurements (diameter, volume, etc.) specified by an radiologist # 1

AI filters out normal scans; the radiologist, without the help of an AI, analyzes only cases with
suspected pathology

# 2

AI filters out normal scans; the radiologist, with the help of an AI, analyzes only cases with
suspected pathology

# 3

AI is not included in image interpretation # 0

Implementation Perspectives

17. I1. In your opinion, which of the listed functions of AI will be the most useful for
radiologist? (select all that applies)

Answers: label

Acceleration of the image reconstruction phase □ A

Image acquisition decision support system □ A

Image post-processing (quality improvement, noise reduction) □ A

Collection of quantitative data (size, volume, density/intensity) □ A

Incidental finding detection □ A

Cancer staging (as in TNM system) □ A

Assistance writing a structured report □ A

I don’t think AI can be useful □ B

I don’t think AI would be widely implemented □ B

18. I2. Imagine that usage of an AI is an additional healthcare service for a patient. Who,
in your opinion, should pay for it? (one answer)

Answers: label

Universal health care (compulsory medical insurance) # 4

A patient’s insurance company # 1

Hospital that hosts the AI # 3

A patient # 2

AI developer # 1

I can not imagine such a situation # 0

Other (fill in) # # 2
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19. I4. In your opinion, what modalities will be most affected by AI in the next 5 years?
(select all that applies)

Answers: label

Radiography □ A

Mammography □ A

Ultrasound □ A

CT □ A

MRI □ A

Tomosynthesis □ A

Nuclear imaging □ A

I don’t think AI would have an impact □ B

20. H6. In your opinion, what will be the radiologist’s role in implementation of AI in
medical imaging? (select all that applies)

Answers: label

Image markup for AI training □ A

Formulating diagnostic tasks for developers □ A

Participation in the development of AI tools (programming, consulting for developers) □ A

Basic usability assessment (DICOM SR and SC) before implementation □ A

Pre-implementation diagnostic performance assessment □ A

Giving feedback on AI tools □ A

Radiologists will not be involved in any way in the development, testing or quality assessment of AI tools □ B

Difficult to say □ C

Hopes and Fears

21. H1. In your opinion, will the widespread use of AI by the radiologists affect the
prestige of their profession in the next 5 years? (one answer)

Answers: label

Will not affect/difficult to answer # 2

Perhaps, the prestige will drop a little # 1

Yes, the prestige will drop significantly # 0

Perhaps, the prestige will grow a little # 3

Yes, the prestige will grow significantly # 4

22. H4. In your opinion, will the widespread use of AI affect the workload of the radiolo-
gists? (one answer)

Answers: label

The workload will significantly decrease # 4

The workload will somewhat decrease # 3

It will not/difficult to say # 2

The workload will somewhat increase # 1

The workload will significantly increase # 0
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23. H5. In your opinion, will the widespread use of AI affect the salary of radiologists in
your country in the next 5 years? (one answer)

Answers: label

It will not/difficult to say # 2

The salary will somewhat decrease # 1

The salary will significantly decrease # 0

The salary will somewhat increase # 3

The salary will significantly increase # 4

Appendix A.2. Scoring

Questions from 1 to 9 are background questions and not scored.
For all questions from 10 to 23 (except for I1, I4, H6), the score corresponds to the

number of the selected answer (listed under “label”).
For questions I1, I4, H6, multiple choice is implied. The sum of the selected answers’

individual scores is linearly converted to a Likert scale as follows:

I1: B—0, 1A—1, 2-3A—2, 4-5A—3, 6 or more A—4;
I4: B or 1A—4, 2-3A—3, 4-5A—2, 6A—1, 7A—0;
H6: B—0, C—1, 1-2A—2, 3-4A—3, 5-6A—4.

The “Familiarity” domain is scored as a sum of F1 and F4 questions.
The total score (S) of the questionnaire is calculated according to the equation:

S = (T1 + T2 + T3 + T4 + T6) * 0.6 + (I1 + I2 + I4 + H6) * 0.75 + H1 + H4 + H5
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